SEPARABLE PHYSICS-INFORMED NEURAL NETWORKS FOR SOLVING ELASTICITY PROBLEMS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Abstract –A method for solving elasticity problems based on separable physics-informed neural networks (SPINN) in conjunction with the deep energy method (DEM) is presented. Numerical experiments have been carried out for a number of problems showing that this method has a significantly higher convergence rate and accuracy than the vanilla physics-informed neural networks (PINN) and even SPINN based on a system of partial differential equations (PDEs). In addition, using the SPINN in the framework of DEM approach it is possible to solve problems of the linear theory of elasticity on complex geometries, which is unachievable with the help of PINNs in frames of partial differential equations. Considered problems are very close to the industrial problems in terms of geometry, loading, and material parameters. Bibl. 61. Fig. 6. Tabl. 8.

About the authors

V. A Es'kin

University of Nizhny Novgorod; Huawei Nizhny Novgorod Research Center

Author for correspondence.
Email: vasiliy.eskin@gmail.com
Nizhny Novgorod, Russia; Nizhny Novgorod, Russia

D. V Davydov

Mechanical Engineering Research Institute of Russian Academy of Sciences; Huawei Nizhny Novgorod Research Center

Email: davidovdan274@yandex.ru
Nizhny Novgorod, Russia; Nizhny Novgorod, Russia

J. V Gur'eva

Huawei Nizhny Novgorod Research Center

Email: gureva-yulya@list.ru
Nizhny Novgorod, Russia

A. O Malkhanov

Huawei Nizhny Novgorod Research Center

Email: alexey.malkhanov@gmail.com
Nizhny Novgorod, Russia

M. E Smorkalov

Huawei Nizhny Novgorod Research Center; Skolkovo Institute of Science and Technology

Email: smorkalovne@gmail.com
Nizhny Novgorod, Russia; Moscow, Russia

References

  1. L. Alzubaidi, J. Zhang, A.J. Humaidi, A.A. Dujaili, Y. Duan, O.A. Shamma, J. Santamar´ıa, M.A. Fadhel, M.A. Amidie, and L. Farhan, Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Springer Inter. Publ., 2021. https://doi.org/10.1186/s40537-021-00444-8
  2. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015). http://www.nature.com/ articles/nature14539
  3. P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI: A Review of Machine Learning Interpretability Methods,” Entropy 23(1) (2021). https://www.mdpi.com/1099-4300/23/1/18
  4. S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F.S. Khan, and M. Shah, “Transformers in Vision: A Survey,” ACM Comput. Surv. 54(10), (2022). https://doi.org/10.1145/3505244
  5. A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones, L. Kaiser, N. Kalchbrenner, N. Parmar, R. Sepassi, N. Shazeer, and J. Uszkoreit, “Tensor2Tensor for Neural Machine Translation,” 2018. https://arxiv.org/abs/1803.07416
  6. Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao, “Learning Deep Transformer Models for Machine Translation,” 2019. https://arxiv.org/abs/1906.01787
  7. S. Yao and X. Wan, “Multimodal transformer for multimodal machine translation,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, Jul. 2020, p. 4346–4350. https://aclanthology.org/2020.acl-main.400
  8. A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, “Zero-Shot Text-to-Image Generation,” 2021. https://arxiv.org/abs/2102.12092
  9. S. Frolov, T. Hinz, F. Raue, J. Hees, and A. Dengel, “Adversarial text-to-image synthesis: A review,” Neural Networks 144, 187–209 (2021). https://www.sciencedirect.com/science/article/pii/S0893608021002823
  10. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play,” Science 362(6419), 1140–1144 (2018). https://www.science.org/doi/abs/10.1126/science.aar6404
  11. J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver, “Mastering Atari, Go, chess and shogi by planning with a learned model,” Nature 588(7839), 604–609 (2020). http://www.nature.com/articles/s41586-020-03051-4
  12. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” 2022. https://arxiv.org/abs/2203.02155
  13. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707 (2019). https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125
  14. S. Wang, S. Sankaran, and P. Perdikaris, “Respecting causality is all you need for training physics-informed neural networks,” 2022, arXiv:2203.07404. http://arxiv.org/abs/2203.07404
  15. H. Wang, X. Qian, Y. Sun, and S. Song, “A Modified Physics Informed Neural Networks for Solving the Partial Differential Equation with Conservation Laws,” https://ssrn.com/abstract=4274376
  16. V.A. Es’kin, D.V. Davydov, E.D. Egorova, A.O. Malkhanov, M.A. Akhukov, and M.E. Smorkalov, “About Modifications of the Loss Function for the Causal Training of Physics-Informed Neural Networks,” Doklady Mathematics 110(S1), S172–S192 (2024). [Online]. Available: https://link.springer.com/10.1134/S106456242460194X
  17. S. Wang, S. Sankaran, H. Wang, and P. Perdikaris, “An expert’s guide to training physics-informed neural networks,” 2023, arXiv:2308.08468.
  18. L. Lu, P. Jin, G. Pang, Z. Zhang, and G.E. Karniadakis, “Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators,” Nature Machine Intelligence 3(3), 218–229 (2021). https://doi.org/10.1038%2Fs42256-021-00302-5
  19. Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar, “Fourier Neural Operator with Learned Deformations for PDEs on General Geometries,” 2022, arXiv:2207.05209. https://arxiv.org/abs/2207.05209
  20. M.A. Krinitskiy, V.M. Stepanenko, A.O. Malkhanov, and M.E. Smorkalov, “A General Neural-NetworksBased Method for Identification of Partial Differential Equations, Implemented on a Novel AI Accelerator,” Supercomputing Frontiers and Innovations 9(3) (2022). https://superfri.org/index.php/superfri/article/view/ 439
  21. V. Fanaskov and I. Oseledets, “Spectral Neural Operators,” 2022, arXiv:2205.10573. https://arxiv.org/abs/2205. 10573
  22. O. Ovadia, A. Kahana, P. Stinis, E. Turkel, and G.E. Karniadakis, “ViTO: Vision Transformer-Operator,” mar 2023, arXiv:2303.08891. http://arxiv.org/abs/2303.08891
  23. H. Jin, E. Zhang, B. Zhang, S. Krishnaswamy, G.E. Karniadakis, and H.D. Espinosa, “Mechanical characterization and inverse design of stochastic architected metamaterials using neural operators,” 2023, arXiv:2311.13812.
  24. M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations,” Part I, 1–22, arXiv:1711.10561v1. https://arxiv.org/abs/1711.10561
  25. “Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations,” Part II, 1–19, arXiv:1711.10566v1. https://arxiv.org/abs/1711.10566
  26. S. Cai, Z. Wang, F. Fuest, Y.J. Jeon, C. Gray, and G.E. Karniadakis, “Flow over an espresso cup: inferring 3-d velocity and pressure fields from tomographic background oriented schlieren via physics-informed neural networks,” J. Fluid Mech. 915 ( 2021). http://dx.doi.org/10.1017/jfm.2021.135
  27. D.C. Psichogios and L.H. Ungar, “A hybrid neural network-first principles approach to process modeling,” Aiche Journal 38, 1499–1511 (1992).
  28. I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural networks for solving ordinary and partial differential equations,” IEEE Transactions on Neural Networks 9(5), 987–1000 (1998). https://doi.org/10.1109%2F72.712178
  29. C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, Ramadhan, and A. Edelman, “Universal Differential Equations for Scientific Machine Learning,” 1–55, jan 2020, arXiv:2001.04385. http://arxiv. org/abs/2001.04385
  30. L. Yuan, Y.-Q. Ni, X.-Y. Deng, and S. Hao, “A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations,” J. Comput. Phys. 462, 11260 (2022). https://doi.org/10.1016/j.jcp.2022.111260 https://linkinghub.elsevier. com/retrieve/pii/S0021999122003229
  31. X. Jin, S. Cai, H. Li, and G.E. Karniadakis, “NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations,” J. Comput. Phys. 426, 109951 (2021). https://www.sciencedirect.com/science/article/pii/S0021999120307257
  32. L. Zhao, Z. Li, Z. Wang, B. Caswell, J. Ouyang, and G.E. Karniadakis, “Activeand transfer-learning applied to microscale-macroscale coupling to simulate viscoelastic flows,” J. Comput. Phys. 427, 110069 (2021), arXiv:2005.04382. https://doi.org/10.1016/j.jcp.2020.110069
  33. E. Kharazmi, Z. Zhang, and G.E. Karniadakis, “hp-VPINNs: Variational physics-informed neural networks with domain decomposition,” Comput. Meth. in Appl. Mech. and Engineer. 374, 113547 (2021), arXiv:2003.05385. https://doi.org/10.1016/j.cma.2020.113547
  34. L. Yang, X. Meng, and G.E. Karniadakis, “B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data,” J. Comput. Phys. 425, 109913 (2021), arXiv:2003.06097. https://doi.org/10.1016/j.jcp.2020.109913
  35. S. Cuomo, V.S. di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What’s next,” jan 2022, arXiv:2201.05624. http://arxiv.org/abs/2201.05624
  36. G. Pang, M. D’Elia, M. Parks, and G.E. Karniadakis, “nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications,” J. Comput. Phys. 422, 109760 (2020), arXiv:2004.04276. https://doi.org/10.1016/j.jcp.2020.109760
  37. R.G. Patel, I. Manickam, N.A. Trask, M.A. Wood, M. Lee, I. Tomas, and E.C. Cyr, “Thermodynamically consistent physics-informed neural networks for hyperbolic systems,” J. Comput. Phys. 449, 110754 (2022), arXiv:2012.05343. https://doi.org/10.1016/j.jcp.2021.110754 https://linkinghub.elsevier.com/retrieve/pii/S0021999121006495
  38. B. Liu, Y. Wang, T. Rabczuk, T. Olofsson, and W. Lu, “Multi-scale modeling in thermal conductivity of polyurethane incorporated with phase change materials using physics-informed neural networks,” Renewable Energy 220, 119565 (2024). https://www.sciencedirect.com/science/article/pii/S0960148123014805
  39. S. Cai, Z. Mao, Z. Wang, M. Yin, and G.E. Karniadakis, “Physics-informed neural networks (PINNs) for fluid mechanics: a review,” Acta Mechanica Sinica 37(12), 1727–1738 (2021). https://link.springer.com/10.1007/s10409021-01148-1
  40. G. Lin, P. Hu, F. Chen, X. Chen, J. Chen, J. Wang, and Z. Shi, “BINet: Learning to Solve Partial Differential Equations with Boundary Integral Networks,” 1–27, oct 2021, arXiv:2110.00352. http://arxiv.org/abs/2110.00352
  41. Q. He, D. Barajas-Solano, G. Tartakovsky, and A.M. Tartakovsky, “Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport,” Advances in Water Resources 141, 103610 (2020). https://linkinghub.elsevier.com/retrieve/pii/S0309170819311649
  42. E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes, “A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics,” Comput. Meth. in Appl. Mech. and Engineer. 379, 113741 (2021). https://www.sciencedirect.com/science/article/pii/S0045782521000773
  43. Z. Meng, Q. Qian, M. Xu, B. Yu, A.R. Yldz, and S. Mirjalili, “Pinn-form: A new physics-informed neural network for reliability analysis with partial differential equation,” Comput. Meth. in Appl. Mech. and Engineer. 414, 116172 (2023). https://www.sciencedirect.com/science/article/pii/S0045782523002967
  44. E. Samaniego, C. Anitescu, S. Goswami, V. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk, “An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications,” Comput. Meth. in Appl. Mech. and Engineer. 362, 112790 (2020). https://www.sciencedirect.com/science/article/pii/S0045782519306826
  45. L. Ning, Z. Cai, H. Dong, Y. Liu, and W. Wang, “A peridynamic-informed neural network for continuum elastic displacement characterization,” Comput. Meth. in Appl. Mech. and Engineer. 407, 115909 (2023). https://www.sciencedirect.com/science/article/pii/S0045782523000324
  46. W. Hao, L. Tan, X. Yang, D. Shi, M. Wang, G. Miao, and Y. Fan, “A physicsinformed machine learning approach for notch fatigue evaluation of alloys used in aerospace,” International Journal of Fatigue 170, 107536 (2023). https://www.sciencedirect.com/science/article/pii/S0142112323000373
  47. B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the wave equation with physics-informed deep learning,” jun 2020, arXiv:2006.11894. http://arxiv.org/abs/2006.11894
  48. L. Ning, Z. Cai, H. Dong, Y. Liu, and W. Wang, “Physics-informed neural network frameworks for crack simulation based on minimized peridynamic potential energy,” Comput. Meth. in Appl. Mech. and Engineer. 417, 116430 (2023). https://www.sciencedirect.com/science/article/pii/S0045782523005546
  49. A. Harandi, A. Moeineddin, M. Kaliske, S. Reese, and S. Rezaei, “Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains,” Inter. J. Numeric. Meth. Engineer. Nov. 2023. http://dx.doi.org/10.1002/nme.7388
  50. J. Cho, S. Nam, H. Yang, S.-B. Yun, Y. Hong, and E. Park, “Separable physics-informed neural networks,” 2023, arXiv:2306.15969.
  51. L.D. Landau and E.M. Lifshitz, Theory of Elasticity. Volume 7 if Course of Theoretical Physics, 3rd ed. Pergamon press, 1986.
  52. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks 2(5), 359–366 (1989). https://www.sciencedirect.com/science/article/pii/0893608089900208
  53. A. Griewank and A. Walther, Evaluating Derivatives, 2nd ed. Society for Industrial and Applied Mathematics, 2008. https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
  54. S. Wang, Y. Teng, and P. Perdikaris, “Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks,” SIAM J. Sci. Comput. 43(5), A3055—A3081 (2021). https://doi.org/10.1137/20M1318043
  55. S. Wang, X. Yu, and P. Perdikaris, “When and why PINNs fail to train: A neural tangent kernel perspective,” J. Comput. Phys. 449, 110768 (2022). https://www.sciencedirect.com/science/article/pii/S002199912100663X
  56. A.L. Caterini and D.E. Chang, Generic Representation of Neural Networks. Cham: Springer Inter. Publ., 2018, p. 23–34. https://doi.org/10.1007/978-3-319-75304-1_3
  57. S. Mishra and R. Molinaro, “Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs,” IMA Journal of Numerical Analysis 42(2), 981–1022 (2021). https://doi.org/10.1093/imanum/drab032
  58. J. Cho, S. Nam, H. Yang, S.-B. Yun, Y. Hong, and E. Park, “Separable physics-informed neural networks,” Advances in Neural Information Processing Systems, 2023.
  59. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Ko¨pf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library. Red Hook, NY, USA: Curran Associates Inc., 2019.
  60. “NVIDIA Modulus v22.09 linear elasticity,” https://docs.nvidia.com/deeplearning/modulus/modulus-v2209/ user_guide/foundational/linear_elasticity.html#:$sim$:text=Modulus%20offers%20the%20capability%20of,a% 20variety%20of%20boundary%20conditions, accessed: 2023-11-21.
  61. D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 2014. https://arxiv.org/abs/1412.6980

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences