Trimethylplatinum(IV) Complexes for MOCVD Applications: A Physicochemical Study

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The structure of trimethylplatinum(IV) iodide [(CH3)3PtI]4 (I) (CIF file CCDC no. 22330007) is refined. The structure of the synthesized for the first time trimethylplatinum(IV) complex with tridentate N,N,O-iminoketonate [(CH3)3Pt(C9H17N2O)] (II) is determined by X-ray diffraction (XRD) (CIF file CCDC no. 22330008). The purity of the isolated phases is confirmed by elemental analysis and IR and NMR spectroscopy. The thermal behavior of complex II is studied by thermogravimetry. The energies of ionization and fragmentation of the molecules of complex II leading to the formation of the most stable fragment [(CH3)3Pt]+ are estimated by quantum-chemical calculations. Complex II is tested in the MOCVD processes. The Pt films with the pronounced (111) texture and particle sizes about 100 nm are prepared on Si plates in the presence of oxygen.

作者简介

S. Dorovskikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: dorov@niic.nsc.ru
России, Новосибирск

N. Kuratieva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: dorov@niic.nsc.ru
России, Новосибирск

I. Korolkov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: dorov@niic.nsc.ru
России, Новосибирск

T. Basova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: dorov@niic.nsc.ru
России, Новосибирск

I. Ilyin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

编辑信件的主要联系方式.
Email: dorov@niic.nsc.ru
России, Новосибирск

参考

  1. Liang L.C., Liao S.M., Zou X.R. // Inorg. Chem. 2021. V. 60. № 20. P. 15118. https://doi.org/10.1021/acs.inorgchem.1c02494
  2. Skabitsky I.V., Romadina E.I., Sakharov S.G. et al. // J. Organomet. Chem. 2019. V. 896. P. 77. https://doi.org/10.1016/j.jorganchem.2019.05.008
  3. Lien C., Sun H., Qin X. et al. // Surf. Sci. 2018. V. 677. P. 161. https://doi.org/10.1016/j.susc.2018.07.002
  4. Thurier C., Doppelt P. // Coord. Chem. Rev. 2008. V. 252. № 1–2. P. 155. https://doi.org/10.1016/j.ccr.2007.04.005
  5. Komiya S., Ezumi S., Komine N. et al. // Organometallics. 2009. V. 28. № 13. P. 3608. https://doi.org/10.1021/om900319a
  6. Pichaandi K.R., Kabalan L., Amini H.et al. // Inorg. Chem. 2017. V. 56. № 4. P. 2145. https://doi.org/10.1021/acs.inorgchem.6b02801
  7. Ghosh B.N., Lentz D., Schlecht S. et al. // New J. Chem. 2015. V. 39. P. 3536. https://doi.org/10.1039/C4NJ02426E
  8. Ghosh B.N., Hausmann H., Schlecht S. et al. // ZAAC. 2013. V. 639. № 12–13. P. 2202. https://doi.org/10.1002/zaac.201300277
  9. Ghosh B.N., Schlecht S., Bauzá A. // New J. Chem. 2017. V. 41. P. 3498. https://doi.org/10.1039/C7NJ00337D
  10. Lindner R., Wagner C., Steinborn D. // J. Am. Chem. Soc. 2009. V. 131. № 25. P. 8861.https://doi.org/10.1021/ja901264t
  11. Lanci M.P., Remy M.S., Lao D.B. et al. // Organometallics. 2011. V. 30. № 14. P. 370. https://doi.org/10.1021/om200508k
  12. Baker L., Cavanagh A.S., Seghete D. et al. // ACS Nano. 2013. V. 7. № 7. P. 6337. https://doi.org/10.1021/nn402385f
  13. Aaltonen T., Rahtu A., Ritala M. // Electrochem. Solid-state Lett. 2003. V. 6. № 9. P. 130. https://doi.org/10.1149/1.1595312
  14. Karakovskaya K.I., Dorovskikh S.I., Vikulova E.S. et al. // Coatings. 2021. V. 11. № 1. P. 78. https://doi.org/10.3390/coatings11010078
  15. Dorovskikh S.I., Zharkova G.I., Turgambaeva A.E. et al. // Appl. Organomet. Chem. 2017. V. 31. № 7. e3654. https://doi.org/10.1002/aoc.3654
  16. Zharkova G.I., Baidina I., Turgambaeva A. et al. // Polyhedron 2012. V. 40. P. 40. https://doi.org/10.1016/j.poly.2012.03.045
  17. Zharkova G.I., Baidina I.A., Igumenov I.K. et al. // Russ. J. Coord. Chem. 2011. V. 37. P. 680. https://doi.org/10.1134/S1070328411080136
  18. Mohlala L.M., Jen T.-C., Olubambi P.A. // Procedia Manuf. 2019. V. 35. P. 1250. https://doi.org/10.1016/j.promfg.2019.06.083
  19. Dorovskikh S.I., Krisyuk V.V., Mirzaeva I.V. et al. // Polyhedron. 2020. V. 182. P. 114475. https://doi.org/10.1016/j.poly.2020.114475
  20. Dorovskikh S.I., Klyamer D.D., Mirzaeva I.V. et al. // J. Fluor. Chem. 2021. V. 249. P. 109843. https://doi.org/10.1016/j.jfluchem.2021.109843
  21. Fulmer G.R., Miller A J.M., Sherden N.H. et al. // J. Organomet. 2010. V. 29. P. 2176. https://doi.org/10.1021/om100106e
  22. Baldwin J.C., Kaska W.C. // Inorg. Chem. 1975. V. 14. № 8. P. 2020. https://doi.org/10.1021/ic50150a063
  23. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12). Madison (WI, USA): Bruker AXS Inc., 2004.
  24. Sheldrick G. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  25. ADF 2022. SCM. Theoretical Chemistry. Amsterdam (The Netherlands): Vrije Universiteit, 2022. http://www.scm.com
  26. Lenthe E. van, Ehlers A., Baerends E.J. // J. Chem. Phys. 1999. V. 110. № 18. P. 8943. https://doi.org/10.1063/1.478813
  27. Pye C.C., Ziegler T. // Theor. Chem. Acc. 1999. V. 101. № 6. P. 396. https://doi.org/10.1007/s002140050457
  28. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 9. P. 301. https://doi.org/10.1107/S0021889895014920
  29. Donnay G., Coleman L.B., Krueghoff N.G. et al. // Acta Crystallogr. B. 1968. V. 24. P. 157.
  30. Zharkova G.I., Baidina I.A., Naumov D.Y. et al. // J. Struct. Chem. 2011. V. 52. № 4. P. 550. https://doi.org/10.1134/S0022476611030152
  31. Paul H. // Adv. Eng. Mater. 2010. V. 12. P. 1029. https://doi.org/10.1002/adem.201000078
  32. Goswami J., Wang C.-G., Cao W., Dey S.K. // Chem. Vap. Depos. 2003. V. 9. № 4. P. 213. https://doi.org/10.1002/cvde.20030624033

补充文件

附件文件
动作
1. JATS XML
2.

下载 (862KB)
3.

下载 (1MB)
4.

下载 (112KB)
5.

下载 (51KB)
6.

下载 (1MB)

版权所有 © С.И. Доровских, Н.В. Куратьева, И.В. Корольков, Т.В. Басова, И.Ю. Ильин, 2023