Adducts of Sterically Hindered Tellurium Catecholate with N-Methylpyrrolidone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of adducts of tellurium(IV) 3,6-di-tert-butyl catecholate (Te(Cat36)2) with N-methylpyrrolidone (NMP) is studied. The crystallization from a CH2Cl2–NMP–aromatic hydrocarbon mixture is found to result in the formation of dimeric complexes [{Te(Cat36)2}2(μ-NMP)(μ-arene)] (arene = C6H6, C7H8), whereas mononuclear [Te(Cat36)2(NMP)2] is formed from a CH2Cl2–NMP–alkane mixture. The formation of the adducts with aromatic hydrocarbons indicates a possibility of using the tellurium complexes for the separation of hydrocarbon mixtures, including an industrially important benzene–cyclohexane mixture.

Full Text

Restricted Access

About the authors

P. A. Petrov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: panah@niic.nsc.ru
Russian Federation, Novosibirsk

E. A. Filippova

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: panah@niic.nsc.ru
Russian Federation, Novosibirsk

T. S. Sukhikh

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: panah@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Poddel’sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291.
  2. Kaim W. // Inorg. Chem. 2011. V. 50. P. 9752.
  3. Abakumov G.A., Poddelsky A.I., Grunova E.V. et al. // Angew. Chem., Int. Ed. 2005. V. 44. P. 2767.
  4. Cherkasov V.K., Abakumov G.A., Grunova E.V. et al. // Chem. Eur. J. 2006. V. 12. P. 3916.
  5. Poddel’sky A.I., Kurskii Yu.A., Piskunov A.V. et al. // Appl. Organomet. Chem. 2011. V. 25. P. 180.
  6. Ilyakina E.V., Poddel’sky A.I., Cherkasov V.K., Abakumov G.A. // Mendeleev Commun. 2012. V. 22. P. 208.
  7. Lado A.V., Piskunov, A.V., Cherkasov, V.K. et al // Russ. J. Coord. Chem. 2006. V. 32. P. 173. doi: 10.1134/S1070328406030031
  8. Piskunov A.V., Ershova I.V., Fukin G.K., Shavyrin A.S. // Inorg. Chem. Commun. 2013. V. 38. P. 127.
  9. Piskunov A.V., Meshcheryakova I.N., Fukin G.K. et al. // Dalton Trans. 2013. V. 42. P. 10533.
  10. Thorwart T., Hartman D., Greb L. // Chem. Eur. J. 2022. V. 23. Art. e202202273.
  11. Thorwart T., Roth D., Greb L. // Chem. Eur. J. 2021. V. 21. P. 10422.
  12. Hartmann D., Braner S., Greb L. // Chem. Commun. 2021. V. 57. P. 8572.
  13. Ansmann N., Thorwart T., Greb L. // Angew. Chem. Int. Ed. 2022. V. 61. Art. e202210132.
  14. Arsenyeva K.V., Pashanova K.I., Trofimova O.Yu. et al. // New J. Chem. 2021. V. 45. P. 11758.
  15. Arsenyeva K.V., Klimashevskaya A.V., Pashanova, K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. Art. e6593.
  16. Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83.
  17. Klimashevskaya A.V., Arsenyeva K.V., Cherkasov A.V. et al. // J. Struct. Chem. 2023. V. 64. P. 2271. doi: 10.1134/S0022476623120016
  18. Klimashevskaya A. V., Arsenyeva, K. V., Maleeva A. V. et al. // Eur. J. Inorg. Chem. 2023. Art. e202300540.
  19. Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mendeleev Commun. 2023. V. 33. P. 733.
  20. Ershova I.V., Piskunov A.V., Cherkasov V.K. // Russ. Chem. Rev. 2020. V. 89. P. 1157.
  21. Chegerev M.G., Starikova A.A., Piskunov A.V., Cherkasov V.K. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 252.
  22. Chegerev M.G., Piskunov A.V., Starikova A.A. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 1087.
  23. Greb L. // Eur. J. Inorg. Chem. 2022. V. 2022. Art. e202100871.
  24. Antikainen P.J., Mälkönen P.J. // Z. Anorg. Allg. Chem. 1959. V. 299. P. 292.
  25. Lindqvist O. // Acta Chem. Scand. 1967. V. 21. P. 1473.
  26. Annan T.A., Ozarowski A., Tian Z., Tuck D.G. // Dalton Trans. 1992. P. 2931.
  27. Kieser J.M., Jones L.O., Lin N.J. et al. // Inorg. Chem. 2021. V. 60. P. 3460.
  28. Petrov P.A., Filippova E.A., Sukhikh T.S. et al. // Inorg. Chem. 2022. V. 61. P. 9184.
  29. Petrov P.A. // Russ. J. Coord. Chem. 2023. V. 49. P. 357. doi: 10.1134/S1070328423600262
  30. Petrov P.A., Kadilenko E.M., Sukhikh T.S. et al. // Chem. Eur. J. 2020. V. 26. P. 14688.
  31. Mahmudov K.T., Kopylovich M.N., Guedes da Silva M.F.C., Pombeiro A.J.L. // Dalton Trans. 2017. V. 46. P. 10121.
  32. Fourmigué M., Dhaka A. // Coord. Chem. Rev. 2020. V. 403. P. 213084.
  33. Pale P., Mamane V. // Chem. Eur. J. 2023. V. 29. Art. e202302755.
  34. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
  35. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  36. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  37. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  38. Scherpf T., Feichtner K.-S., Gessner V.H. // Angew. Chem. Int. Ed. 2017. V. 56. P. 3275.
  39. Schmid R. // J. Solution Chem. 1983. V. 12. P. 135.
  40. O’Quinn G.K., Rudd M.D., Kautz J.A. // Phosphorus, Sulfur, Silicon Relat. Elem. 2002. V. 177. P. 853.
  41. Fulmer G.R., Miller A.J., Sherden N.H. et al. // Organometallics. 2020. V. 29. P. 2176.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (76KB)
3. Fig. 1. Molecular structures of complexes I (a), II (b), III (c) (thermal ellipsoids of 30% probability; H atoms are not shown)

Download (551KB)

Copyright (c) 2024 Российская академия наук