Adducts of Sterically Hindered Tellurium Catecholate with N-Methylpyrrolidone
- Authors: Petrov P.A.1, Filippova E.A.1, Sukhikh T.S.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 50, No 10 (2024)
- Pages: 661-668
- Section: Articles
- URL: https://genescells.com/0132-344X/article/view/667654
- DOI: https://doi.org/10.31857/S0132344X24100033
- EDN: https://elibrary.ru/LPWAYK
- ID: 667654
Cite item
Abstract
The formation of adducts of tellurium(IV) 3,6-di-tert-butyl catecholate (Te(Cat36)2) with N-methylpyrrolidone (NMP) is studied. The crystallization from a CH2Cl2–NMP–aromatic hydrocarbon mixture is found to result in the formation of dimeric complexes [{Te(Cat36)2}2(μ-NMP)(μ-arene)] (arene = C6H6, C7H8), whereas mononuclear [Te(Cat36)2(NMP)2] is formed from a CH2Cl2–NMP–alkane mixture. The formation of the adducts with aromatic hydrocarbons indicates a possibility of using the tellurium complexes for the separation of hydrocarbon mixtures, including an industrially important benzene–cyclohexane mixture.
Keywords
Full Text

About the authors
P. A. Petrov
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: panah@niic.nsc.ru
Russian Federation, Novosibirsk
E. A. Filippova
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: panah@niic.nsc.ru
Russian Federation, Novosibirsk
T. S. Sukhikh
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: panah@niic.nsc.ru
Russian Federation, Novosibirsk
References
- Poddel’sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291.
- Kaim W. // Inorg. Chem. 2011. V. 50. P. 9752.
- Abakumov G.A., Poddelsky A.I., Grunova E.V. et al. // Angew. Chem., Int. Ed. 2005. V. 44. P. 2767.
- Cherkasov V.K., Abakumov G.A., Grunova E.V. et al. // Chem. Eur. J. 2006. V. 12. P. 3916.
- Poddel’sky A.I., Kurskii Yu.A., Piskunov A.V. et al. // Appl. Organomet. Chem. 2011. V. 25. P. 180.
- Ilyakina E.V., Poddel’sky A.I., Cherkasov V.K., Abakumov G.A. // Mendeleev Commun. 2012. V. 22. P. 208.
- Lado A.V., Piskunov, A.V., Cherkasov, V.K. et al // Russ. J. Coord. Chem. 2006. V. 32. P. 173. doi: 10.1134/S1070328406030031
- Piskunov A.V., Ershova I.V., Fukin G.K., Shavyrin A.S. // Inorg. Chem. Commun. 2013. V. 38. P. 127.
- Piskunov A.V., Meshcheryakova I.N., Fukin G.K. et al. // Dalton Trans. 2013. V. 42. P. 10533.
- Thorwart T., Hartman D., Greb L. // Chem. Eur. J. 2022. V. 23. Art. e202202273.
- Thorwart T., Roth D., Greb L. // Chem. Eur. J. 2021. V. 21. P. 10422.
- Hartmann D., Braner S., Greb L. // Chem. Commun. 2021. V. 57. P. 8572.
- Ansmann N., Thorwart T., Greb L. // Angew. Chem. Int. Ed. 2022. V. 61. Art. e202210132.
- Arsenyeva K.V., Pashanova K.I., Trofimova O.Yu. et al. // New J. Chem. 2021. V. 45. P. 11758.
- Arsenyeva K.V., Klimashevskaya A.V., Pashanova, K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. Art. e6593.
- Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83.
- Klimashevskaya A.V., Arsenyeva K.V., Cherkasov A.V. et al. // J. Struct. Chem. 2023. V. 64. P. 2271. doi: 10.1134/S0022476623120016
- Klimashevskaya A. V., Arsenyeva, K. V., Maleeva A. V. et al. // Eur. J. Inorg. Chem. 2023. Art. e202300540.
- Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mendeleev Commun. 2023. V. 33. P. 733.
- Ershova I.V., Piskunov A.V., Cherkasov V.K. // Russ. Chem. Rev. 2020. V. 89. P. 1157.
- Chegerev M.G., Starikova A.A., Piskunov A.V., Cherkasov V.K. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 252.
- Chegerev M.G., Piskunov A.V., Starikova A.A. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 1087.
- Greb L. // Eur. J. Inorg. Chem. 2022. V. 2022. Art. e202100871.
- Antikainen P.J., Mälkönen P.J. // Z. Anorg. Allg. Chem. 1959. V. 299. P. 292.
- Lindqvist O. // Acta Chem. Scand. 1967. V. 21. P. 1473.
- Annan T.A., Ozarowski A., Tian Z., Tuck D.G. // Dalton Trans. 1992. P. 2931.
- Kieser J.M., Jones L.O., Lin N.J. et al. // Inorg. Chem. 2021. V. 60. P. 3460.
- Petrov P.A., Filippova E.A., Sukhikh T.S. et al. // Inorg. Chem. 2022. V. 61. P. 9184.
- Petrov P.A. // Russ. J. Coord. Chem. 2023. V. 49. P. 357. doi: 10.1134/S1070328423600262
- Petrov P.A., Kadilenko E.M., Sukhikh T.S. et al. // Chem. Eur. J. 2020. V. 26. P. 14688.
- Mahmudov K.T., Kopylovich M.N., Guedes da Silva M.F.C., Pombeiro A.J.L. // Dalton Trans. 2017. V. 46. P. 10121.
- Fourmigué M., Dhaka A. // Coord. Chem. Rev. 2020. V. 403. P. 213084.
- Pale P., Mamane V. // Chem. Eur. J. 2023. V. 29. Art. e202302755.
- Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- Scherpf T., Feichtner K.-S., Gessner V.H. // Angew. Chem. Int. Ed. 2017. V. 56. P. 3275.
- Schmid R. // J. Solution Chem. 1983. V. 12. P. 135.
- O’Quinn G.K., Rudd M.D., Kautz J.A. // Phosphorus, Sulfur, Silicon Relat. Elem. 2002. V. 177. P. 853.
- Fulmer G.R., Miller A.J., Sherden N.H. et al. // Organometallics. 2020. V. 29. P. 2176.
Supplementary files
