New cobalt complex with dihydroxycoumarin: synthesis and kinetics of its redox-activated dissociation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new redox-active cobalt(III) complex containing the 2-oxo-2Н-chromene-6,7-diolate dianion and 4,4ʹ-dimethoxy-2,2ʹ-bipyridine as ligands is synthesized. The reduction of the sythesized complex with ascorbic acid in an inert atmosphere is studied in situ by NMR spectrocopy. The reduction is shown to result in the release of 6,7-dihydrocycoumarin acting as a model drug. This process has the first order with respect to the initial complex.

Texto integral

Acesso é fechado

Sobre autores

К. Spiridonov

Moscow State University; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: khakina90@ineos.ac.ru
Rússia, Moscow; Moscow

I. Nikovskii

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: khakina90@ineos.ac.ru
Rússia, Moscow

Е. Antoshkina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: khakina90@ineos.ac.ru
Rússia, Moscow; Moscow oblast, Dolgoprudnyi

E. Khakina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Autor responsável pela correspondência
Email: khakina90@ineos.ac.ru
Rússia, Moscow

Yu. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: khakina90@ineos.ac.ru
Rússia, Moscow

Bibliografia

  1. Brown J.M., Giaccia A.J. // Cancer Res. 1998. V. 58. P. 1408.
  2. Xiong Q., Liu B., Ding M. et al. // Cancer Lett. 2020. V. 486. P. 1.
  3. Vaupel P., Thews O., Hoeckel M. // Med. Oncology. 2001. V. 18. P. 243.
  4. Ruirui L., Feifei P., Jia C. et al. // Asian J. Pharmaceutic. Sci. 2020. V. 15. P. 311.
  5. Renfrew A.K. // Metallomics. 2014. V. 6. P. 1324.
  6. Hall M.D., Failes T.W., Yamamoto N. et al. // Dalton Trans. 2007. P. 3983.
  7. Palmeira-Mello M.V., Caballero A.B., Ribeiro J.M. et al. // J. Inorg. Biochem. 2020. V. 211. P. 111211.
  8. Tsitovich P.B., Spernyak J.A., Morrow J.R. // Angew. Chem. Int. Ed. 2013. V. 52. P. 13997.
  9. Renfrew A.K., O′Neill E.S., Hambley T.W. et al. // Coord. Chem. Rev. 2018. V. 375. P. 221.
  10. McPherson J.N., Hogue R.W., Akogun F.S. et al. // Inorg. Chem. 2019. V. 58. P. 2218.
  11. Khakina E.A., Nikovskii I.A., Babakina D.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 24. https://doi.org/10.1134/S1070328422700105
  12. Vlcek A.A. // Inorg. Chem. 1967. V. 6. P. 1425.
  13. Ma D.-L., Wu C., Cheng S.-S. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 341.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (85KB)
3. Scheme 2.

Baixar (158KB)
4. Fig. 1. Electrospray ionization mass spectrum of complex I recorded for positive ions.

Baixar (89KB)
5. Fig. 2. NMR spectrum of 1H of complex I in DMSO-d6 solution at room temperature.

Baixar (134KB)
6. Fig. 3. NMR spectrum 13C of complex I in DMSO-d6 solution at room temperature.

Baixar (119KB)
7. Fig. 4. Dynamics of changes in the NMR spectrum 1H over time during the reduction of complex I with ascorbic acid in an argon atmosphere (the spectrum was recorded in a mixture of acetonitrile-d3 and deuterated water, 3.7 : 1 vol.).

Baixar (112KB)
8. Fig. 5. Mass spectrum of the products of reduction of complex I with ascorbic acid, recorded for positive ions.

Baixar (119KB)
9. Fig. 6. Kinetic curve of consumption of complex I during reduction with ascorbic acid in an argon atmosphere (a) and dependence of the logarithm of the concentration lnc of complex I on the reaction time (b).

Baixar (85KB)

Declaração de direitos autorais © Российская академия наук, 2024