Heteroleptic ionic copper(I) complexes based on pyrazolo[1,5-a][1,10]phenanthrolines: synthesis, structure, and photoluminescence

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Heteroleptic copper(I) tetrafluoroborate complexes with pyrazolo[1,5-a][1,10]phenanthrolines (Ln, n = 1–3) and bis[(2-diphenylphosphino)phenyl]ether (POP) were synthesized and structurally characterized. The coordination compounds with the general formula [CuLn(POP)]BF4 · Solv (n = 1, Solv = 0.5MeCN, complex I; n = 2, Solv = 0.5CH2Cl2, complex II; n = 3, Solv = 1.25Et2O, complex III · Et2O) were prepared by the reaction of CuBF4 with Ln and POP in organic solvents (MeCN/CH2Cl2/Et2O) at 1 : 1 : 1 molar ratio. Compound III · Et2O gradually loses solvate molecules to be converted to the complex [CuL3(POP)]BF4 (III). According to single-crystal X-ray diffraction data, the complexes (I, II, III · Et2O) are ionic; in complex cation [CuLn(POP)]+ the coordination environment of the copper atom is a distorted tetrahedron with CuN2P2 chromophore. The photoluminescence properties of the obtained complexes (I–III) were studied in the solid state and in solution. In the absorption spectra of the complexes, a charge transfer band is observed at 380–385 nm; excitation in this range gives rise to two emission bands at 480 and 650 nm in solution. In the solid state, the complexes show photoluminescence only in the red range (λmax = 600–610 nm) with microsecond lifetimes. It was found that complexes I and III with a more perfect tetrahedral environment have quantum yields an order of magnitude higher than the quantum yield observed for complex II.

Texto integral

Acesso é fechado

Sobre autores

K. Vinogradova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kiossarin@mail.ru
Rússia, Novosibirsk

M. Rakhmanova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Rússia, Novosibirsk

M. Taigina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University (National Research University)

Email: kiossarin@mail.ru
Rússia, Novosibirsk; Novosibirsk

N. Pervukhina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Rússia, Novosibirsk

D. Naumov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Rússia, Novosibirsk

V. Sannikova

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Rússia, Novosibirsk

I. Filippov

Novosibirsk State University (National Research University); Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Rússia, Novosibirsk; Novosibirsk

D. Kolybalov

Novosibirsk State University (National Research University); Center for Collective Use, Siberian Ring Source of Photons (SKIF)

Email: kiossarin@mail.ru
Rússia, Novosibirsk; Koltsovo

A. Vorob’ev

Novosibirsk State University (National Research University); Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Rússia, Novosibirsk; Novosibirsk

Bibliografia

  1. Li X., Xie Y., Li Z. // Chem. Asian J. 2021. V. 16. № 19. P. 2817.
  2. Yersin H. // Top. Curr. Chem. 2004. V. 241. P. 1.
  3. Czerwieniec R., Leitl M. J., Homeieret H. H.H. et al. // Coord. Chem. Rev. 2016. V. 325. P. 2.
  4. Yersin H., Rausch A. F., Czerwieniec R. et al. // Coord. Chem. Rev. 2011. V. 255. № 21–22. P. 2622.
  5. Li T.Y., Zheng S. J., Djurovich P. I. et al. // Chem. Rev. 2024. V. 124. P. 4332.
  6. Alsaeedi M. S. Current Topics and Emerging Issues in Chemical Science. Morocco: Faculty of Sciences, Sidi Mohamed Ben Abdellah University. V. 1. 2023. P. 104.
  7. Ma D. and Duan L. // Chem. Rec. 2019. V. 19. № 8. P. 1483.
  8. Hu Y.X., Xia X., He W. Z. et al. // Org. Electron. 2019. V. 66. P. 126.
  9. Li T.Y., Wu J., Wu Z. G. et al. // Coord. Chem. Rev. 2018. V. 374. P. 55.
  10. Monkman A. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 20463.
  11. Tanimoto S., Suzuki T., Nakanotani H. et al. // Chem Lett. 2016. V. 45. № 7. P. 770.
  12. Bergmann L., Zink D. M., Bräse S. et al. // Top. Curr. Chem. 2016. V. 374. № 3. Art 22.
  13. Patil V.V., Hong W. P., Lee J. Y. // Adv. Energy Mater. 2024. Р. 2400258.
  14. Yuan L., Zhang Y. P., Zheng Y. X. // Sci. China Chem. 2024. V. 67 № 4. P. 1097.
  15. Dumur F. // Org. Electronics. 2015. V. 21. P. 27.
  16. Sandoval-Pauker C., Santander-Nelli M., Dreyse P. // RSC Adv. 2022. V. 12. № 17. P. 10653.
  17. Mcmillin D.R., Mcnett K. M. // Chem. Rev. 1998. V. 98. № 3. P. 1201.
  18. Leoni E., Mohanraj J., Holler M. et al. // Inorg. Chem. 2018. V. 57. № 24. P. 15537.
  19. Holler M., Delavaux-Nicot B., Nierengarten J.F. // Chem. Eur. J. 2019. V. 25. № 18. P. 4543.
  20. Armaroli N. // Chem Soc. Rev. 2001. V. 30. № 2. P. 113.
  21. Lavie-Cambot A., Cantuel M., Leydet Y. et al. // Coord. Chem. Rev. 2008. V. 252. № 23–24. P. 2572.
  22. Accorsi G., Listorti A., Yoosaf K. et al. // Chem Soc Rev. 2009. Vol. 38, № 6. P. 1690.
  23. Miao H., Wang P., Huang Z. et al. // Struct. Chem. 2023.V. 34. № 6. Р. 2307.
  24. Zhang X., Wu Z., Xu J. Y. et al. // Polyhedron. 2021. V. 202. P. 115197.
  25. Toigo J., Farias G., Salla C. A.M. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 31. P. 3177.
  26. Li C., MacKenzie C.F.R., Said S.A. et al. // Inorg. Chem. 2021. V. 60. № 14. P. 10323.
  27. Jin X.X., Li T., Shi D. P. et al. // New J. Chem. 2020. V. 44. № 31. P. 13393.
  28. Sannikova V.A., Filippov I. R., Karmatskikh O. Y. et al. // Chem. Heterocycl. Compd. 2020. V. 56. № 8. P. 1042.
  29. Malakhova J.A., Berezin A. S., Glebov E. M. et al. // Inorg. Chim. Acta. 2023. V. 555. P. 121604.
  30. Fadeeva V.P., Tikhova V.D., Nikulicheva O.N. // J. Analyt. Chem. 2008. V. 63. № 11. P. 1094.
  31. APEX2 (version 1.08), SAINT (version 7.03), and SADABS (version 2.11). Bruker AXS Inc., 2004.
  32. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
  33. Cuttell D.G., Kuang S.M., Fanwick P.E. et al. // J. Am. Chem. Soc. 2002. V. 124. № 1. P. 6.
  34. Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. № 9. P. 955.
  35. Allen F.H., Kennard O., Watson D.G. // Perkin Trans. 1987. № 12. P. S1.
  36. Zheng D., Tong Q. // Russ. J. Phys. Chem. A. 023. V. 97. № 13. P. 2942.
  37. Kuang X.N., Lin S., Liu J.M. et al. // Polyhedron. 2019. V. 165. P. 51.
  38. Wang Y.P., Hu X.H., Wang Y.F. et al. // Polyhedron. 2015. V. 102. P. 782.
  39. Si Z., Li X., Li X. et al. // Inorg. Chem. Commun. 2009. V. 12. № 10. P. 1016.
  40. Smith C.S., Branham C.W., Marquardt B.J. et al. // J. Am. Chem. Soc. 2010. V. 132. № 40. P. 14079.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Sch. 1: Synthesis scheme of pyrazolo[1,5-a][1,10]phenanthroline derivatives [28].

Baixar (170KB)
3. Sch. 2. Scheme for the synthesis of heteroleptic copper(I) complexes.

Baixar (162KB)
4. Fig. 1. Structure of the complex cation [CuL1(POP)]+ in I, depicted as ellipsoids (50% probability), with atoms numbered. Hydrogen atoms have been omitted for clarity.

Baixar (606KB)
5. Fig. 2. Structure of the complex cation [CuL2(POP)]+ in II, depicted as ellipsoids (50% probability), with atoms numbered. Hydrogen atoms have been omitted for clarity.

Baixar (517KB)
6. Fig. 3. Structure of the complex cation [CuL3(POP)]+ in III - Et2O, depicted as ellipsoids (50% probability), with atoms numbered. Hydrogen atoms have been omitted for clarity.

Baixar (470KB)
7. Fig. 4. FL spectra of compound L3 in CH2Cl2 (a) and in the solid state (b).

Baixar (333KB)
8. Fig. 5. PL spectra of complex I in CH2Cl2 (a) and in the solid state (b).

Baixar (303KB)
9. Fig. 6. PL spectra of complex II in CH2Cl2 (a) and in the solid state (b).

Baixar (303KB)
10. Fig. 7. PL spectra of complex III in CH2Cl2 (a) and in the solid state (b).

Baixar (317KB)

Declaração de direitos autorais © Российская академия наук, 2024