Peculiarities of the synthesis and structures of heterometallic carboxylate complexes with {Zn2Ln} and {Zn2Ca} metal cores

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of investigation of the heterometallic trinuclear {Zn2Ln} and {Zn2Ca} carboxylate coordination compounds are systematized in the review. The methods of the synthesis, structural peculiarities, and some physicochemical properties are discussed.

Texto integral

Acesso é fechado

Sobre autores

S. Melnikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Moscow

I. Rubtsova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Rússia, Moscow

S. Nikolaevskii

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sanikol@igic.ras.ru
Rússia, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Rússia, Moscow

M. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Rússia, Moscow

Bibliografia

  1. Dossantos C., Harte A.J., Quinn S.J., Gunnlaugsson T. // Coord. Chem. Rev. 2008. V. 252. № 23–24. P. 2512.
  2. Yang X., Jones R.A., Huang S. // Coord. Chem. Rev. 2014. V. 273–274. P. 63.
  3. Yang X., Wang S., Wang C. et al. // Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials. Berlin Heidelberg: Springer, 2016. P. 155.
  4. Xu L.-J., Xu G.-T., Chen Z.-N. // Coord. Chem. Rev. 2014. V. 273–274. P. 47.
  5. Zhao N.-N., Zhang P., Jiang M. et al. // J. Mol. Struct. 2023. V. 1291. P. 136056.
  6. Bryleva Y.A., Rakhmanova M.I., Artem’ev A.V. et al. // New J. Chem. 2024. V. 48. P. 6430.
  7. Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539. https://doi.org/10.1134/S1070328422090056
  8. Zhong L.X., Liu M.Y., Zhang B.W. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 4. P. 290. https://doi.org/10.1134/S1070328420040090
  9. Janicki R., Mondry A., Starynowicz P. // Coord. Chem. Rev. 2017. V. 340. P. 98.
  10. Rossi P., Macedi E., Formica M. et al. // ChemPlusChem. 2020. V. 85. № 6. P. 1179.
  11. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
  12. Koshelev D.S., Chikineva T.Yu., Kozhevnikova (Khudoleeva) V.Yu. et al. // Dyes Pigments. 2019. V. 170. P. 107604.
  13. Grebenyuk D., Zobel M., Polentarutti M. et al. // Inorg. Chem. 2021. V. 60. № 11. P. 8049.
  14. Grebenyuk D., Zobel M., Tsymbarenko D. // Polymers. 2022. V. 14. № 16. P. 3328.
  15. Grebenyuk D.I., Tsymbarenko D.M. // J. Struct. Chem. 2022. V. 63. № 3. P. 432.
  16. Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
  17. Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. P. 5689.
  18. Xin Y., Wang J., Zychowicz M. et al. // J. Am. Chem. Soc. 2019. V. 141. № 45. P. 18211.
  19. Wang J., Zakrzewski J.J., Heczko M. et al. // J. Am. Chem. Soc. 2020. V. 142. № 8. P. 3970.
  20. Douib H., Gonzalez J.F., Speed S. et al. // Dalton Trans. 2022. V. 51. № 43. P. 16486.
  21. Zhang R., Wang L., Xu C. et al. // Dalton Trans. 2018. V. 47. № 21. P. 7159.
  22. Qiao N., Xin X.-Y., Guan X.-F. et al. // Inorg. Chem. 2022. V. 61. № 38. P. 15098.
  23. Samulionis A.S., Melnikov S.N., Pavlov A.A. et al. // J. Struct. Chem. 2024. V. 65. № 1. P. 63.
  24. Nikolaevskii S.A., Yambulatov D.S., Starikova A.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 4. P. 260. https://doi.org/10.1134/S1070328420040053
  25. Yambulatov D.S., Petrov P.A., Nelyubina Y.V. et al. // Mendeleev Commun. 2020. V. 30. № 3. P. 293.
  26. Bondarenko M.A., Rakhmanova M.I., Plyusnin P.E. et al. // Polyhedron. 2021. V. 194. P. 114895.
  27. Vershinin M.A., Rakhmanova M.I., Novikov A.S. et al. // Molecules. 2021. V. 26. № 11. P. 3393.
  28. Bondarenko M.A., Adonin S.A. // J. Struct. Chem. 2021. V. 62. № 8. P. 1251.
  29. Griffiths K., Kostakis G.E. // Dalton Trans. 2018. V. 47. № 35. P. 12011.
  30. Zhu T., Chen Y., Yang X. et al. // CrystEngComm. 2022. V. 24. № 37. P. 6527.
  31. Chen Y., Yang X., Cheng Y. et al. // Inorg. Chem. 2022. V. 61. № 2. P. 1011.
  32. Zhao J., Leng X., Lin J. et al. // Chem. Commun. 2023. V. 59. № 36. P. 5435.
  33. Furman J.D., Burwood R.P., Tang M. et al. // J. Mater. Chem. 2011. V. 21. № 18. P. 6595.
  34. Yin Y.-J., Zhao H., Zhang L. et al. // Chem. Mater. 2021. V. 33. № 18. P. 7272.
  35. Egorov E.N., Mikhalyova E.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2013. V. 62. № 10. P. 2141.
  36. Cui Y., Qian Y.-T., Huang J.-S. // Polyhedron. 2001. V. 20. № 15–16. P. 1795.
  37. Cui Y., Zheng F., Qian Y., Huang J. // Inorg. Chim. Acta. 2001. V. 315. № 2. P. 220.
  38. Boyle T.J., Raymond R., Boye D.M. et al. // Dalton Trans. 2010. V. 39. № 34. P. 8050.
  39. Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. № 30. P. 13349.
  40. Wang Y.-M., Wang Y., Wang R.-X. et al. // J. Phys. Chem. Solids. 2017. V. 104. P. 221.
  41. Kiskin M.A., Varaksina E.A., Taydakov I.V., Eremenko I.L. // Inorg. Chim. Acta. 2018. V. 482. P. 85.
  42. Chi Y.-X., Niu S.-Y., Wang R. et al. // J. Lumin. 2011. V. 131. № 8. P. 1707.
  43. Wu B., Lu W., Zheng X. // J. Chem. Crystallogr. 2003. V. 33. № 3. P. 203.
  44. Wu B., Guo Y. // Acta Crystallogr. E. 2004. V. 60. № 10. P. m1356.
  45. Zhu Y., Lu W.-M., Chen F. // Acta Crystallogr. E. 2004. V. 60. № 7. P. m963.
  46. Zhu Y., Lu W., Chen F. // Acta Crystallogr. E. 2004. V. 60. № 10. P. m1459.
  47. Zhu Y., Lu W.-M., Ma M., Chen F. // Acta Crystallogr. E. 2005. V. 61. № 8. P. m1610.
  48. Бюлер К., Пирсон Д. Органические синтезы. Ч. 2. М.: Мир, 1973.
  49. Vigato P.A., Peruzzo V., Tamburini S. // Coord. Chem. Rev. 2012. V. 256. № 11. P. 953.
  50. Alexeev Yu.E., Kharisov B.I., Hernández García T.C., Garnovskii A.D. // Coord. Chem. Rev. 2010. V. 254. № 7. P. 794.
  51. Andruh M. // Chem. Commun. 2011. V. 47. № 11. P. 3025.
  52. Andruh M. // Dalton Trans. 2015. V. 44. № 38. P. 16633.
  53. Yang X., Schipper D., Liao A. et al. // Polyhedron. 2013. V. 52. P. 165.
  54. Liao A., Yang X., Stanley J.M. et al. // J. Chem. Crystallogr. 2010. V. 40. № 12. P. 1060.
  55. Zou X., Fei B., Li G. // Polyhedron. 2020. V. 192. P. 114811.
  56. Zhang Y., Feng W., Liu H. et al. // Inorg. Chem. Commun. 2012. V. 24. P. 148.
  57. Tian Y.-M., Li H.-F., Han B.-L. et al. // Acta Crystallogr. E. 2012. V. 68. № 12. P. m1500.
  58. Maeda M., Hino S., Yamashita K. et al. // Dalton Trans. 2012. V. 41. № 44. P. 13640.
  59. Hino S., Maeda M., Kataoka Y. et al. // Chem. Lett. 2013. V. 42. № 10. P. 1276.
  60. Dong Y.-J., Ma J.-C., Zhu L.-C. et al. // J. Coord. Chem. 2017. V. 70. № 1. P. 103.
  61. Akine S., Taniguchi T., Nabeshima T. // Inorg. Chem. 2004. V. 43. № 20. P. 6142.
  62. Akine S., Taniguchi T., Nabeshima T. // Chem. Lett. 2006. V. 35. № 6. P. 604.
  63. Kori D., Dote Y., Koikawa M., Yamada Y. // Polyhedron. 2019. V. 170. P. 612.
  64. Liu X., Yang X., Ma Y. et al. // J. Lumin. 2021. V. 229. P. 117679.
  65. Niu M., Yang X., Ma Y. et al. // J. Phys. Chem. A. 2021. V. 125. № 1. P. 251.
  66. Miroslaw B., Cristóvão B., Hnatejko Z. // Molecules. 2018. V. 23. № 7. P. 1761.
  67. Miroslaw B., Cristóvão B., Hnatejko Z. // Polyhedron. 2019. V. 166. P. 83.
  68. Xu J., Xia X., Zhang G. et al. // Inorg. Chim. Acta. 2020. V. 512. P. 119918.
  69. Qu Y., Wang C., Wu Y. et al. // J. Lumin. 2020. V. 226. P. 117437.
  70. Zhang G., Xia X., Xu J. et al. // J. Mol. Struct. 2021. V. 1226. P. 129337.
  71. Yang X.-P., Jones R.A., Wong W.-K. et al. // Chem. Commun. 2006. № 17. P. 1836.
  72. Lü X., Bi W., Chai W. et al. // Polyhedron. 2009. V. 28. № 1. P. 27.
  73. Dong W.-K., Ma J.-C., Zhu L.-C. et al. // Cryst. Growth Des. 2016. V. 16. № 12. P. 6903.
  74. Xu J., Xia X., Xia L. et al. // J. Coord. Chem. 2021. V. 74. № 13. P. 2263.
  75. Li K., Shen Q., Kong X. et al. // J. Coord. Chem. 2023. V. 76. № 11–12. P. 1370.
  76. Fu G., He Y., Li B. et al. // J. Mater. Chem. C. 2018. V. 6. № 33. P. 8950.
  77. Shukla P., Ansari K.U., Gao C. et al. // Dalton Trans. 2020. V. 49. № 30. P. 10580.
  78. Li M., Wu H., Wei Q. et al. // Dalton Trans. 2018. V. 47. № 28. P. 9482.
  79. Upadhyay A., Das C., Vaidya S. et al. // Chem. Eur. J. 2017. V. 23. № 20. P. 4903.
  80. Zheng Z.-P., Ou Y.-J., Hong X.-J. et al. // Inorg. Chem. 2014. V. 53. № 18. P. 9625.
  81. Roy S., Du J., Manohar E.M. et al. // Cryst. Growth Des. 2023. V. 23. № 4. P. 2218.
  82. Akine S., Taniguchi T., Nabeshima T. // J. Am. Chem. Soc. 2006. V. 128. № 49. P. 15765
  83. Akine S., Taniguchi T., Nabeshima T. // Angew. Chem. Int. Ed. 2002. V. 41. № 24. P. 4670.
  84. Akine S., Kagiyama S., Nabeshima T. // Inorg. Chem. 2007. V. 46. № 23. P. 9525.
  85. Akine S., Kagiyama S., Nabeshima T. // Inorg. Chem. 2010. V. 49. № 5. P. 2141.
  86. Akine S., Tadokoro T., Nabeshima T. // Inorg. Chem. 2012. V. 51. № 21. P. 11478.
  87. Dong W.-K., Zheng S.-S., Zhang J.-T. et al. // Spectrochim. Acta. A. 2017. V. 184. P. 141.
  88. Fondo M., Corredoira-Vázquez J., García-Deibe A.M. et al. // Inorg. Chem. 2017. V. 56. № 10. P. 5646.
  89. Akine S., Morita Y., Utsuno F., Nabeshima T. // Inorg. Chem. 2009. V. 48. № 22. P. 10670.
  90. Clegg W., Little I.R., Straughan B.P. // Inorg. Chem. 1988. V. 27. № 11. P. 1916.
  91. Cui Y., Zhang X., Zheng F. et al. // Acta Crystallogr. C. 2000. V. 56. № 10. P. 1198.
  92. Necefoglu H., Clegg W., Scott A.J. // Acta Crystallogr. E. 2002. V. 58. № 3. P. m123.
  93. Escobedo-Martínez C., Concepción Lozada M., Gnecco D. et al. // J. Chem. Crystallogr. 2012. V. 42. № 8. P. 794.
  94. Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722.
  95. Ejarque D., Calvet T., Font-Bardia M., Pons J. // Inorganics. 2022. V. 10. № 8. P. 118.
  96. Pramanik A., Fronczek F.R., Venkatraman R., Hossain A. // Acta Crystallogr. E. 2013. V. 69. № 12. P. m643.
  97. Liu C., An X.-X., Cui Y.-F. et al. // Appl. Organomet. Chem. 2020. V. 34. № 1.
  98. Hao J., Li L.-L., Zhang J.-T. et al. // Polyhedron. 2017. V. 134. P. 1.
  99. Wang L., Li X.-Y., Zhao Q. et al. // RSC Adv. 2017. V. 7. № 77. P. 48730.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Distribution diagram of rare earth element complexes with a metal core {Zn2Ln} by lanthanides in publications for the period from 2001 to 2023.

Baixar (118KB)
3. Fig. 2. 3D conformations of the resulting complexes from publication [89] (reproduced with modifications with permission of the American Chemical Society, Copyright ©2009, American Chemical Society).

Baixar (141KB)
4. Scheme 1

Baixar (85KB)
5. Scheme 2

Baixar (619KB)
6. Scheme 3

Baixar (422KB)
7. Scheme 4

Baixar (394KB)
8. Scheme 5

Baixar (957KB)
9. Scheme 6

Baixar (190KB)
10. Scheme 7

Baixar (703KB)
11. Scheme 8

Baixar (612KB)
12. Scheme 9

Baixar (455KB)
13. Scheme 10

Baixar (446KB)
14. Scheme 11

Baixar (479KB)
15. Scheme 12

Baixar (358KB)

Declaração de direitos autorais © Российская академия наук, 2025