Peculiarities of the synthesis and structures of heterometallic carboxylate complexes with {Zn2Ln} and {Zn2Ca} metal cores

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of investigation of the heterometallic trinuclear {Zn2Ln} and {Zn2Ca} carboxylate coordination compounds are systematized in the review. The methods of the synthesis, structural peculiarities, and some physicochemical properties are discussed.

Full Text

Restricted Access

About the authors

S. N. Melnikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Moscow

I. K. Rubtsova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

S. A. Nikolaevskii

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: sanikol@igic.ras.ru
Russian Federation, Moscow

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

M. A. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

References

  1. Dossantos C., Harte A.J., Quinn S.J., Gunnlaugsson T. // Coord. Chem. Rev. 2008. V. 252. № 23–24. P. 2512.
  2. Yang X., Jones R.A., Huang S. // Coord. Chem. Rev. 2014. V. 273–274. P. 63.
  3. Yang X., Wang S., Wang C. et al. // Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials. Berlin Heidelberg: Springer, 2016. P. 155.
  4. Xu L.-J., Xu G.-T., Chen Z.-N. // Coord. Chem. Rev. 2014. V. 273–274. P. 47.
  5. Zhao N.-N., Zhang P., Jiang M. et al. // J. Mol. Struct. 2023. V. 1291. P. 136056.
  6. Bryleva Y.A., Rakhmanova M.I., Artem’ev A.V. et al. // New J. Chem. 2024. V. 48. P. 6430.
  7. Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539. https://doi.org/10.1134/S1070328422090056
  8. Zhong L.X., Liu M.Y., Zhang B.W. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 4. P. 290. https://doi.org/10.1134/S1070328420040090
  9. Janicki R., Mondry A., Starynowicz P. // Coord. Chem. Rev. 2017. V. 340. P. 98.
  10. Rossi P., Macedi E., Formica M. et al. // ChemPlusChem. 2020. V. 85. № 6. P. 1179.
  11. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
  12. Koshelev D.S., Chikineva T.Yu., Kozhevnikova (Khudoleeva) V.Yu. et al. // Dyes Pigments. 2019. V. 170. P. 107604.
  13. Grebenyuk D., Zobel M., Polentarutti M. et al. // Inorg. Chem. 2021. V. 60. № 11. P. 8049.
  14. Grebenyuk D., Zobel M., Tsymbarenko D. // Polymers. 2022. V. 14. № 16. P. 3328.
  15. Grebenyuk D.I., Tsymbarenko D.M. // J. Struct. Chem. 2022. V. 63. № 3. P. 432.
  16. Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
  17. Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. P. 5689.
  18. Xin Y., Wang J., Zychowicz M. et al. // J. Am. Chem. Soc. 2019. V. 141. № 45. P. 18211.
  19. Wang J., Zakrzewski J.J., Heczko M. et al. // J. Am. Chem. Soc. 2020. V. 142. № 8. P. 3970.
  20. Douib H., Gonzalez J.F., Speed S. et al. // Dalton Trans. 2022. V. 51. № 43. P. 16486.
  21. Zhang R., Wang L., Xu C. et al. // Dalton Trans. 2018. V. 47. № 21. P. 7159.
  22. Qiao N., Xin X.-Y., Guan X.-F. et al. // Inorg. Chem. 2022. V. 61. № 38. P. 15098.
  23. Samulionis A.S., Melnikov S.N., Pavlov A.A. et al. // J. Struct. Chem. 2024. V. 65. № 1. P. 63.
  24. Nikolaevskii S.A., Yambulatov D.S., Starikova A.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 4. P. 260. https://doi.org/10.1134/S1070328420040053
  25. Yambulatov D.S., Petrov P.A., Nelyubina Y.V. et al. // Mendeleev Commun. 2020. V. 30. № 3. P. 293.
  26. Bondarenko M.A., Rakhmanova M.I., Plyusnin P.E. et al. // Polyhedron. 2021. V. 194. P. 114895.
  27. Vershinin M.A., Rakhmanova M.I., Novikov A.S. et al. // Molecules. 2021. V. 26. № 11. P. 3393.
  28. Bondarenko M.A., Adonin S.A. // J. Struct. Chem. 2021. V. 62. № 8. P. 1251.
  29. Griffiths K., Kostakis G.E. // Dalton Trans. 2018. V. 47. № 35. P. 12011.
  30. Zhu T., Chen Y., Yang X. et al. // CrystEngComm. 2022. V. 24. № 37. P. 6527.
  31. Chen Y., Yang X., Cheng Y. et al. // Inorg. Chem. 2022. V. 61. № 2. P. 1011.
  32. Zhao J., Leng X., Lin J. et al. // Chem. Commun. 2023. V. 59. № 36. P. 5435.
  33. Furman J.D., Burwood R.P., Tang M. et al. // J. Mater. Chem. 2011. V. 21. № 18. P. 6595.
  34. Yin Y.-J., Zhao H., Zhang L. et al. // Chem. Mater. 2021. V. 33. № 18. P. 7272.
  35. Egorov E.N., Mikhalyova E.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2013. V. 62. № 10. P. 2141.
  36. Cui Y., Qian Y.-T., Huang J.-S. // Polyhedron. 2001. V. 20. № 15–16. P. 1795.
  37. Cui Y., Zheng F., Qian Y., Huang J. // Inorg. Chim. Acta. 2001. V. 315. № 2. P. 220.
  38. Boyle T.J., Raymond R., Boye D.M. et al. // Dalton Trans. 2010. V. 39. № 34. P. 8050.
  39. Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. № 30. P. 13349.
  40. Wang Y.-M., Wang Y., Wang R.-X. et al. // J. Phys. Chem. Solids. 2017. V. 104. P. 221.
  41. Kiskin M.A., Varaksina E.A., Taydakov I.V., Eremenko I.L. // Inorg. Chim. Acta. 2018. V. 482. P. 85.
  42. Chi Y.-X., Niu S.-Y., Wang R. et al. // J. Lumin. 2011. V. 131. № 8. P. 1707.
  43. Wu B., Lu W., Zheng X. // J. Chem. Crystallogr. 2003. V. 33. № 3. P. 203.
  44. Wu B., Guo Y. // Acta Crystallogr. E. 2004. V. 60. № 10. P. m1356.
  45. Zhu Y., Lu W.-M., Chen F. // Acta Crystallogr. E. 2004. V. 60. № 7. P. m963.
  46. Zhu Y., Lu W., Chen F. // Acta Crystallogr. E. 2004. V. 60. № 10. P. m1459.
  47. Zhu Y., Lu W.-M., Ma M., Chen F. // Acta Crystallogr. E. 2005. V. 61. № 8. P. m1610.
  48. Бюлер К., Пирсон Д. Органические синтезы. Ч. 2. М.: Мир, 1973.
  49. Vigato P.A., Peruzzo V., Tamburini S. // Coord. Chem. Rev. 2012. V. 256. № 11. P. 953.
  50. Alexeev Yu.E., Kharisov B.I., Hernández García T.C., Garnovskii A.D. // Coord. Chem. Rev. 2010. V. 254. № 7. P. 794.
  51. Andruh M. // Chem. Commun. 2011. V. 47. № 11. P. 3025.
  52. Andruh M. // Dalton Trans. 2015. V. 44. № 38. P. 16633.
  53. Yang X., Schipper D., Liao A. et al. // Polyhedron. 2013. V. 52. P. 165.
  54. Liao A., Yang X., Stanley J.M. et al. // J. Chem. Crystallogr. 2010. V. 40. № 12. P. 1060.
  55. Zou X., Fei B., Li G. // Polyhedron. 2020. V. 192. P. 114811.
  56. Zhang Y., Feng W., Liu H. et al. // Inorg. Chem. Commun. 2012. V. 24. P. 148.
  57. Tian Y.-M., Li H.-F., Han B.-L. et al. // Acta Crystallogr. E. 2012. V. 68. № 12. P. m1500.
  58. Maeda M., Hino S., Yamashita K. et al. // Dalton Trans. 2012. V. 41. № 44. P. 13640.
  59. Hino S., Maeda M., Kataoka Y. et al. // Chem. Lett. 2013. V. 42. № 10. P. 1276.
  60. Dong Y.-J., Ma J.-C., Zhu L.-C. et al. // J. Coord. Chem. 2017. V. 70. № 1. P. 103.
  61. Akine S., Taniguchi T., Nabeshima T. // Inorg. Chem. 2004. V. 43. № 20. P. 6142.
  62. Akine S., Taniguchi T., Nabeshima T. // Chem. Lett. 2006. V. 35. № 6. P. 604.
  63. Kori D., Dote Y., Koikawa M., Yamada Y. // Polyhedron. 2019. V. 170. P. 612.
  64. Liu X., Yang X., Ma Y. et al. // J. Lumin. 2021. V. 229. P. 117679.
  65. Niu M., Yang X., Ma Y. et al. // J. Phys. Chem. A. 2021. V. 125. № 1. P. 251.
  66. Miroslaw B., Cristóvão B., Hnatejko Z. // Molecules. 2018. V. 23. № 7. P. 1761.
  67. Miroslaw B., Cristóvão B., Hnatejko Z. // Polyhedron. 2019. V. 166. P. 83.
  68. Xu J., Xia X., Zhang G. et al. // Inorg. Chim. Acta. 2020. V. 512. P. 119918.
  69. Qu Y., Wang C., Wu Y. et al. // J. Lumin. 2020. V. 226. P. 117437.
  70. Zhang G., Xia X., Xu J. et al. // J. Mol. Struct. 2021. V. 1226. P. 129337.
  71. Yang X.-P., Jones R.A., Wong W.-K. et al. // Chem. Commun. 2006. № 17. P. 1836.
  72. Lü X., Bi W., Chai W. et al. // Polyhedron. 2009. V. 28. № 1. P. 27.
  73. Dong W.-K., Ma J.-C., Zhu L.-C. et al. // Cryst. Growth Des. 2016. V. 16. № 12. P. 6903.
  74. Xu J., Xia X., Xia L. et al. // J. Coord. Chem. 2021. V. 74. № 13. P. 2263.
  75. Li K., Shen Q., Kong X. et al. // J. Coord. Chem. 2023. V. 76. № 11–12. P. 1370.
  76. Fu G., He Y., Li B. et al. // J. Mater. Chem. C. 2018. V. 6. № 33. P. 8950.
  77. Shukla P., Ansari K.U., Gao C. et al. // Dalton Trans. 2020. V. 49. № 30. P. 10580.
  78. Li M., Wu H., Wei Q. et al. // Dalton Trans. 2018. V. 47. № 28. P. 9482.
  79. Upadhyay A., Das C., Vaidya S. et al. // Chem. Eur. J. 2017. V. 23. № 20. P. 4903.
  80. Zheng Z.-P., Ou Y.-J., Hong X.-J. et al. // Inorg. Chem. 2014. V. 53. № 18. P. 9625.
  81. Roy S., Du J., Manohar E.M. et al. // Cryst. Growth Des. 2023. V. 23. № 4. P. 2218.
  82. Akine S., Taniguchi T., Nabeshima T. // J. Am. Chem. Soc. 2006. V. 128. № 49. P. 15765
  83. Akine S., Taniguchi T., Nabeshima T. // Angew. Chem. Int. Ed. 2002. V. 41. № 24. P. 4670.
  84. Akine S., Kagiyama S., Nabeshima T. // Inorg. Chem. 2007. V. 46. № 23. P. 9525.
  85. Akine S., Kagiyama S., Nabeshima T. // Inorg. Chem. 2010. V. 49. № 5. P. 2141.
  86. Akine S., Tadokoro T., Nabeshima T. // Inorg. Chem. 2012. V. 51. № 21. P. 11478.
  87. Dong W.-K., Zheng S.-S., Zhang J.-T. et al. // Spectrochim. Acta. A. 2017. V. 184. P. 141.
  88. Fondo M., Corredoira-Vázquez J., García-Deibe A.M. et al. // Inorg. Chem. 2017. V. 56. № 10. P. 5646.
  89. Akine S., Morita Y., Utsuno F., Nabeshima T. // Inorg. Chem. 2009. V. 48. № 22. P. 10670.
  90. Clegg W., Little I.R., Straughan B.P. // Inorg. Chem. 1988. V. 27. № 11. P. 1916.
  91. Cui Y., Zhang X., Zheng F. et al. // Acta Crystallogr. C. 2000. V. 56. № 10. P. 1198.
  92. Necefoglu H., Clegg W., Scott A.J. // Acta Crystallogr. E. 2002. V. 58. № 3. P. m123.
  93. Escobedo-Martínez C., Concepción Lozada M., Gnecco D. et al. // J. Chem. Crystallogr. 2012. V. 42. № 8. P. 794.
  94. Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722.
  95. Ejarque D., Calvet T., Font-Bardia M., Pons J. // Inorganics. 2022. V. 10. № 8. P. 118.
  96. Pramanik A., Fronczek F.R., Venkatraman R., Hossain A. // Acta Crystallogr. E. 2013. V. 69. № 12. P. m643.
  97. Liu C., An X.-X., Cui Y.-F. et al. // Appl. Organomet. Chem. 2020. V. 34. № 1.
  98. Hao J., Li L.-L., Zhang J.-T. et al. // Polyhedron. 2017. V. 134. P. 1.
  99. Wang L., Li X.-Y., Zhao Q. et al. // RSC Adv. 2017. V. 7. № 77. P. 48730.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution diagram of rare earth element complexes with a metal core {Zn2Ln} by lanthanides in publications for the period from 2001 to 2023.

Download (118KB)
3. Fig. 2. 3D conformations of the resulting complexes from publication [89] (reproduced with modifications with permission of the American Chemical Society, Copyright ©2009, American Chemical Society).

Download (141KB)
4. Scheme 1

Download (85KB)
5. Scheme 2

Download (619KB)
6. Scheme 3

Download (422KB)
7. Scheme 4

Download (394KB)
8. Scheme 5

Download (957KB)
9. Scheme 6

Download (190KB)
10. Scheme 7

Download (703KB)
11. Scheme 8

Download (612KB)
12. Scheme 9

Download (455KB)
13. Scheme 10

Download (446KB)
14. Scheme 11

Download (479KB)
15. Scheme 12

Download (358KB)

Copyright (c) 2025 Российская академия наук