Fulvene complex stabilized by triangular ruthenium cluster

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The tetranuclear complex H2Ru4(CO)11415-СС5H4) (I) was obtained by the photochemical reaction of Ru3(CO)12 with Z-1-(4-tolyl)-3-phenylaminoprop-2-en-1-one (λ ≥ 210 nm). The structure of complex I was established by single crystal X-ray diffraction. According to X-ray diffraction data, the complex is described by a superposition of resonance structures, that is, the carbene cluster YCRu3, in which the substituent Y at the carbyne carbon atom is (η5-C5H4)Ru(CO)2, and a vinylidene complex containing a fulvene form of the ligand, in which the exocyclic carbenium carbon atom is additionally stabilized by coordination to a triangular ruthenium cluster. For description of the interatomic binding in I, quantum chemical calculations of the electronic structure of the molecule in the gas phase were carried out at the PBE0/def2TZVP level. The features of binding of the organic ligand to the metal core were described in terms of the atoms in molecules theory. According to the calculations, the C6H4 moiety in I is a fulvene type ligand in which two hydrogen atoms in the CH2 group have been replaced by ruthenium atoms.

Texto integral

Acesso é fechado

Sobre autores

S. Osintseva

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: fmdolgushin@gmail.com
Rússia, Moscow

O. Semeikin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: fmdolgushin@gmail.com
Rússia, Moscow

I. Anan’ev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: fmdolgushin@gmail.com
Rússia, Moscow

F. Dolgushin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: fmdolgushin@gmail.com
Rússia, Moscow

Bibliografia

  1. Bruce M.I. // Comprehensive Organometallic Chemistry. V. 4 / Eds. Wilkinson G., Stone F.G.A. and Abel E.W. Oxford: Pergamon Press, 1982. P. 889.
  2. Pomeroy R.K. // Comprehensive Organometallic Chemistry II. V. 7 / Eds. Abel E.W., Stone F.G.A. and Wilkinson G. Oxford: Pergamon Press, 1995. P. 835.
  3. Kaplan L., Wilzbach K.E. // J. Am. Chem. Soc. 1968. V. 90. № 12. P. 3291.
  4. Hoffmann N. // Chem. Sus. Chem. 2012. № 5. P. 352.
  5. Ford P.C. // J. Organomet. Chem. 1990. V. 383. P. 339.
  6. Leadbeater N.E. // Dalton Trans. 1995. P. 2923.
  7. Grevels F.-W., Reuvers J.G.A., Takats J. // Angew. Chem. Int. Ed. 1981. V. 20. P. 452.
  8. Grevels F.-W., Klotzbucher W.E., Schrickel J., Schaffner K. // J. Am. Chem. Soc. 1994. V. 116. P. 6229.
  9. Рыбинская М.И., Рыбин Л.В., Осинцева С.В. и др. // Изв. АН. Сер. хим. 1995. № 1. С. 159 (Rybinskaya M.I., Rybin L.V., Osintseva S.V. et al. // Russ. Chem. Bull. 1995. V. 44. P.154).
  10. Штельцер Н.А., Осинцева С.В., Петровский П.В. и др. // Изв. АН. Сер. хим. 2006. № 12. С. 2063 (Shtel´tser N.A., Osintseva S.V., Petrovskii P.V. et al. // Russ. Chem. Bull. 2006 V. 55. № 12. P. 2143).
  11. Osintseva S.V., Shtel’tser N.A., Peregudov A.S. et al. // Polyhedron. 2018. V. 148. P. 147.
  12. Osintseva S.V., Dolgushin F.M., Shtel’tser N.A. et al. // Organometallics. 2010. V. 29. P. 1012.
  13. Nesmeyanov A.N., Rybinskaya M.I., Rybin L.V. // Russ. Chem. Bull. 1965 V. 14 P. 1345.
  14. Johnson B.F.G., Johnston R.D., Lewis J. et al. // J. Chem. Soc. A. 1968. P. 2856.
  15. Sheldrick G.M. SADABS. Madison (WI-53719, USA): Bruker AXS Inc., 1997.
  16. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  17. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford (CT): Gaussian Inc., 2016.
  18. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865.
  19. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158
  20. Schaefer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. P. 2571.
  21. Schaefer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. P. 5829.
  22. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. P. 1057.
  23. Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104.
  24. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. № 7. P. 1456.
  25. Keith T.D. AIMAll (version 19.10.12). Overland Park (KS, USA): TK Gristmill Software, 2019.
  26. Gervasio G., Marabello D., Bianchi R., Forni A. // J. Phys. Chem. A. 2010. V. 114. P. 9368.
  27. Allen F.H., Kennard O., Watson D.G. et al. // Perkin Trans. 1987. № 2. P. S1.
  28. Borissova A.O., Antipin M.Yu., Perekalin D.S., Lyssenko K.A. // Cryst. Eng. Comm. 2008. V. 10. P. 827.
  29. Straub T., Haukka M., Pakkanen T.A. // J. Organomet. Chem. 2000. V. 612. P. 106.
  30. Антонова А.Б., Иогансон А.А. // Успехи химии. 1989. Т. 58. № 7. С. 1197 (Antonova A.B., Ioganson A.A. // Russ. Chem. Rev. 1989. V. 58. № 7. P. 693).
  31. Sailor M.J., Brock C.P., Shriver D.F. // J. Am. Chem. Soc. 1987. V. 109. P. 6015.
  32. Colbran S.B., Hanton L.R., Robinson B.H. et al. // J. Organomet. Chem. 1987. V. 330. P. 415.
  33. Hashimoto H., Tobita H., Ogino H. // Inorg. Chim. Acta. 2003. V. 350. P. 347.
  34. Hashimoto H., Tobita H., Ogino H. // Organometallics. 1993. № 12. P. 2182.
  35. Zhi-Hong Ma, Xiao-Huan Liu, Zhan-Gang Han et al. // Transition Met. Chem. 2011. V. 36. P. 207.
  36. Preethalayam P., Krishnan K. S., Thulasi S. et al. // Chem. Rev. 2017. V. 117. P. 3930.
  37. Коридзе А.А. // Успехи химии. 1986. Т. 55. № 2. С. 277 (Koridze A.A. // Russ. Chem. Rev. 1986. V. 55. № 2. P. 113).
  38. Gleiter R., Bleiholder C., Rominger F. // Organometallics. 2007. V. 26. № 20. P. 4850.
  39. Goodman H, Mei L., Gianetti T.L. // Front. Chem. 2019. V. 7. P. 365.
  40. Крейндлин А.З., Рыбинская М.И. // Успехи химии. 2004. V. 73. № 5. P. 453 (Kreindlin A.Z., Rybinskaya M.I. // Russ. Chem. Rev. 2004. V. 73. № 5. P. 417).
  41. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3–4. P. 170.
  42. Espinosa E., Lecomte C., Molins E. // Chem. Phys. Lett. 1999. V. 300. № 5–6. P. 745.
  43. Romanova A., Lyssenko K., Ananyev I. // J. Comput. Chem. 2018. V. 39. № 21. P. 1607.
  44. Borissova A.O., Korlyukov A.A., Antipin M.Yu., Lyssenko K.A. // J. Phys. Chem. A. 2008. V. 112. № 46. P. 11519.
  45. Ananyev I.V., Karnoukhova V.A., Dmitrienko A.O., Lyssenko K.A. // J. Phys. Chem. A. 2017. V. 121. № 23. P. 4517.
  46. Karnoukhova V.A., Fedyanin I.V., Dubasova E.V. et al. // Mendeleev Commun. 2023. V. 33. № 3. P. 353.
  47. Carlos Silva Lopez, Angel R. de Lera // Curr. Org. Chem. 2011. V. 15. № 20. P. 3576.
  48. Ananyev I.V., Lyssenko K.A. // Mendeleev Commun. 2016. V. 26. № 4. P. 338.
  49. Bader R.F.W., Streitwieser A., Neuhaus A. et al. // J. Am. Chem. Soc. 1996. V. 118. № 21. P. 4959.
  50. Рыбинская М.И., Осинцева С.В., Рыбин Л.В. и др. // Изв. АН. Сер. хим. 1998. № 5. С. 1008 (Rybinskaya M.I., Osintseva S.V., Rybin L.V. et al. // Russ. Chem. Bull. 1998. V. 47. № 5. P. 979).
  51. Maitlis P.M. // Accounts of Chem. Res. 1976. V. 9. № 3. P 93.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Molecular structure of complex I (thermal ellipsoids are shown with a probability of 50%).

Baixar (406KB)
3. Fig. 2. Connectivity graph for a fragment of molecule I in the gas phase (excluding interactions with carbonyl ligands), obtained within the framework of the “Atoms in Molecules” theory in the PBE0/def2TZVP approximation. Green dots correspond to the critical points (3, –1) of the ρ(r) function.

Baixar (176KB)
4. Fig. 3. Connectivity graph for the (η1,η5-CH2C5H4)Ru2(CO)6 molecule obtained within the framework of the “Atoms in Molecules” theory in the PBE0/def2TZVP approximation. Green dots correspond to the critical points (3, –1) of the ρ(r) function.

Baixar (141KB)
5. Scheme 1

Baixar (44KB)
6. Scheme 2. Possible resonance structures for complex I.

Baixar (151KB)

Declaração de direitos autorais © Российская академия наук, 2025