Coordination compounds of uranyl nitrate with several amide ligands

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Reactions of UO2(NO3)2 with an amide L (L = acetamide, N,N-dimethylacetamide, propanamide, valeramide, benzamide, N-methylurea) in aqueous media resulted in formation of 6 coordination compounds [UO2(L)2(NO3)2], their compositions and structures were determined by elemental analysis, IR-spectroscopy, RFA and X-ray diffraction. The molecular structure and assignment of absorption bands for the obtained compounds are confirmed by quantum-chemical calculations.

Texto integral

Acesso é fechado

Sobre autores

M. Polukhin

MIREA – Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, Moscow

E. Savinkina

MIREA – Russian Technological University

Autor responsável pela correspondência
Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, Moscow

I. Karavaev

MIREA – Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, Moscow

P. Akulinin

MIREA – Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, Moscow

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: savinkina@mirea.ru
Rússia, Moscow

A. Kubasov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: savinkina@mirea.ru
Rússia, Moscow

M. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: savinkina@mirea.ru
Rússia, Moscow

S. Strashnova

RUDN University

Email: savinkina@mirea.ru

Faculty of Physics and Mathematics and Natural Sciences

Rússia, Moscow

Bibliografia

  1. Filines N., Arrachart G., Giusty F. et al. // New J. Chem. 2021. V. 45. № 12. P. 12798. https://doi.org/10.1039/D1NJ02077C
  2. Berger C., Marie C., Guillaumont D. et al. // Inorg. Chem. 2020. V. 59. № 3. P. 1823. https://doi.org/10.1021/acs.inorgchem.9b03024
  3. Preston J.S., du Preez AC. // Solvent Extr. Ion Exch. 1995. V. 13. № 3. P. 391. https://doi.org/10.1080/07366299508918282
  4. Rao A., Kumar P, Tomar B. // Sep. Purif. Technol. 2014. V. 134. № 25. P. 126. https://doi.org/10.1016/j.seppur.2014.07.036
  5. Alyapyshev M., Babain V., Kirsanov D. // Energies. 2022. V. 15. № 19. P. 7380. https://doi.org/10.3390/en15197380
  6. Vats B.G., Das D., Sundhu B. et al. // Dalton Trans. 2016. V. 45. № 25. P. 10319. https://doi.org/10.1039/C6DT01191H
  7. McCann K., Drader J.A., Braley J.C. // Sep. Purif. Rev. 2018. V. 47. № 1. P. 49. https://doi.org/10.1080/15422119.2017.1321018
  8. Gresham G.L., Dinescu A., Benson M.T. et al. // J. Phys. Chem. A. 2011. V. 115. P. 3497. https://doi.org/dx.doi.org/10.1021/jp109665a
  9. Марков В.П., Цапкина И.В. // Журн. неорган. химии. 1962. Т. 7. № 9. С. 2045. (Markov V.P., Tsapkina I.V. // Russ. J. Inorg. Chem. 1962. V. 7. P. 1057).
  10. Siracusa G., Seminara A., Cucinotta V., Gurrieri S. // Thermochim. Acta. 1978. V. 23. № 1. P. 109. https://doi.org/10.1016/0040-6031(78)85116-8
  11. Gentile P.S., Campisi L.S. // J. Inorg. Nucl. Chem. 1965. V. 27. № 11. P. 2291. https://doi.org/10.1016/0022-1902(65)80119-1
  12. Kostyuk N.N. // Radiochemistry. 2005. V. 47. № 1. P. 153. https://doi.org/10.1007/s11137-005-0063-0
  13. Abate L., Siracusa G., Grasso D. // Thermochim. Acta. 1980. V. 42. № 2. P. 177. https://doi.org/10.1016/0040-6031(80)87101-2
  14. Zalkin A., Ruben H., Templeton H. // Inorg. Chem. 1979. V. 18. № 2. P. 519. https://doi.org/10.1021/ic50192a070
  15. Dalley N.K., Mueller M.H., Simonsen S.H. // Inorg. Chem. 972. V. 11. № 8. P. 1840. https://doi.org/10.1021/ic50114a020
  16. Acher E., Cherkaski Y.H., Dumas T. et al. // Inorg. Chem. 2016. V. 55. № 11. P. 5558. https://doi.org/10.1021/acs.inorgchem.6b00592
  17. Loubert G., Volkringer C., Henry N. et al. // Polyhedron. 2017. V. 138. № 14. P. 7. https://doi.org/10.1016/j.poly.2017.09.006
  18. Loubert G., Henry N., Volkringer C. et al. // Inorg. Chem. 2020. V. 59. № 16. P. 11459. https://doi.org/10.1021/acs.inorgchem.0c01258
  19. Nobuyoshi K., Masayuki H., Masanobu N. et al. // Inorg. Chim. Acta. 2005. V. 358. № 6. P. 1857. https://doi.org/10.1016/j.ica.2004.12.036
  20. Suzuki T., Takao K., Kawasaki T. et al. // Polyhedron. 2015. V. 96. № 16. P. 102. https://doi.org/10.1016/j.poly.2015.04.034
  21. Varga T.R., Sato M., Fazekas, Z. et al. // Inorg. Chem. Comm. 2000. V. 3. № 11. P. 637. https://doi.org/10.1016/S1387-7003(00)00123-4
  22. Takao K., Noda K., Morita Y. et al. // Cryst. Growth Des. 2008. V.8. № 7. P.2364. https://doi.org/10.1021/cg7012254
  23. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  24. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  25. Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS, 2008.
  26. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
  27. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 714. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  28. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  29. Лайков Д.Н., Устынюк Ю.А. // Изв. РАН/ Сер. хим. 2005. Т. 54. № 3. С. 804. (Laikov D.N., Ustynyuk Yu.A. // Russ. Chem. Bull. 2005. V. 54. № 3. P. 820). https://doi.org/10.1007/s11172-005-0329-x
  30. Handy N.C., Cohen A.J. // Mol. Phys. 2001. V. 99. P. 403. https://doi.org/10.1080/00268970010018431
  31. Laikov D.N. // J. Chem. Phys. 2019. V. 150. P. 061103. https://doi.org/10.1063/1.5082231
  32. Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. P. 116. https://doi.org/10.1016/j.cplett.2005.09.046
  33. Hansen P.E. // Molecules. 2021. V. 26. № 9. P. 2409. https://doi.org/10.3390/molecules26092409
  34. Рукк Н.С., Шамсиев Р.С., Альбов Д.В., Мудрецова С.Н. // Тонкие химические технологии. 2021. Т. 16. № 2. С. 113. (Rukk N.S., Shamsiev R.S., Al’bov D.V., Mudretsova S.N. // Fine Chem. Technol. 2021. V. 16. № 2. P. 113). https://doi.org/10.32362/2410-6593-2021-16-2-113-124
  35. Shi X., Bao W. // Front. Chem. 2021. V. 9. P.723718. https://doi.org/10.3389/fchem.2021.723718
  36. Накамото К. // ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. (Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, 1970).
  37. Комяк А.И., Умрейко Д.С., Последович М.Р. // Вест. БГУ. Сер. 1. 2013. № 1. C. 22. https://elib.bsu.by/handle/123456789/90097
  38. Bullock J.I. // J. Inorg. Nucl. Chem. 1967. V. 29. № 9. P.2257. https://doi.org/10.1016/0022-1902(67)80280-X
  39. Caldow G.L., Van Cleave A.B., Eager R.L. // Can. J. Chem. 1960. V. 38. № 6. P. 772. https://doi.org/10.1139/v60-112
  40. De Aquino A.R., Isolani P.C., Zukerman-Schpector J. et al. // J. Alloys Comp. 2001. V. 323. № 12. P. 18. https://doi.org/10.1016/S0925-8388(01)01000-3
  41. Saito Y., Machida K., Uno T. // Spectrochim. Acta. A. 1975. V. 31. № 9–10. P. 1237. https://doi.org/10.1016/0584-8539(75)80179-6

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Additional Materials
Baixar (632KB)
3. Fig. 1. Structure of compounds [UO2(L)2(NO3)2], where L = AA (a), PrA (b), MeUr (c) according to X-ray diffraction data.

Baixar (618KB)
4. Fig. 2. Hydrogen bonds in structure I (a); fragment of the crystal packing of structure I (b).

Baixar (947KB)
5. Fig. 3. Fragment of the crystal packing of structure III. The dotted lines show the intermolecular hydrogen bonds NH…O.

Baixar (581KB)
6. Fig. 4. Hydrogen bonds in the structure of V.

Baixar (241KB)
7. Fig. 5. Hydrogen bonds in structure VI.

Baixar (557KB)
8. Fig. 6. Equilibrium geometries of compounds [UO2(L)2(NO3)2], where L = BzA (a), DMAA (b), VaA (c) according to quantum chemical calculations.

Baixar (686KB)

Declaração de direitos autorais © Российская академия наук, 2025