Координационные соединения нитрата уранила с некоторыми амидными лигандами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Взаимодействием UO2(NO3)2 с амидом L (L = ацетамид, N,N-диметилацетамид, пропанамид, валерамид, бензамид, N-метилмочевина) в водной среде получено шесть координационных соединений [UO2(L)2(NO3)2], состав и строение которых установлены элементным анализом, ИК-спектроскопией, РФА и РСА. Молекулярная структура и отнесение полос поглощения для полученных соединений подтверждены квантово-химическими расчетами.

Полный текст

Доступ закрыт

Об авторах

М. С. Полухин

МИРЭА – Российский технологический университет

Email: savinkina@mirea.ru

Институт тонких химических технологий им М.В. Ломоносова

Россия, Москва

Е. В. Савинкина

МИРЭА – Российский технологический университет

Автор, ответственный за переписку.
Email: savinkina@mirea.ru

Институт тонких химических технологий им М.В. Ломоносова

Россия, Москва

И. А. Караваев

МИРЭА – Российский технологический университет

Email: savinkina@mirea.ru

Институт тонких химических технологий им М.В. Ломоносова

Россия, Москва

П. В. Акулинин

МИРЭА – Российский технологический университет

Email: savinkina@mirea.ru

Институт тонких химических технологий им М.В. Ломоносова

Россия, Москва

Г. А. Бузанов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: savinkina@mirea.ru
Россия, Москва

А. С. Кубасов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: savinkina@mirea.ru
Россия, Москва

М. С. Григорьев

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: savinkina@mirea.ru
Россия, Москва

С. Б. Страшнова

РУДН им. Патриса Лумумбы

Email: savinkina@mirea.ru

Факультет физико-математических и естественных наук

Россия, Москва

Список литературы

  1. Filines N., Arrachart G., Giusty F. et al. // New J. Chem. 2021. V. 45. № 12. P. 12798. https://doi.org/10.1039/D1NJ02077C
  2. Berger C., Marie C., Guillaumont D. et al. // Inorg. Chem. 2020. V. 59. № 3. P. 1823. https://doi.org/10.1021/acs.inorgchem.9b03024
  3. Preston J.S., du Preez AC. // Solvent Extr. Ion Exch. 1995. V. 13. № 3. P. 391. https://doi.org/10.1080/07366299508918282
  4. Rao A., Kumar P, Tomar B. // Sep. Purif. Technol. 2014. V. 134. № 25. P. 126. https://doi.org/10.1016/j.seppur.2014.07.036
  5. Alyapyshev M., Babain V., Kirsanov D. // Energies. 2022. V. 15. № 19. P. 7380. https://doi.org/10.3390/en15197380
  6. Vats B.G., Das D., Sundhu B. et al. // Dalton Trans. 2016. V. 45. № 25. P. 10319. https://doi.org/10.1039/C6DT01191H
  7. McCann K., Drader J.A., Braley J.C. // Sep. Purif. Rev. 2018. V. 47. № 1. P. 49. https://doi.org/10.1080/15422119.2017.1321018
  8. Gresham G.L., Dinescu A., Benson M.T. et al. // J. Phys. Chem. A. 2011. V. 115. P. 3497. https://doi.org/dx.doi.org/10.1021/jp109665a
  9. Марков В.П., Цапкина И.В. // Журн. неорган. химии. 1962. Т. 7. № 9. С. 2045. (Markov V.P., Tsapkina I.V. // Russ. J. Inorg. Chem. 1962. V. 7. P. 1057).
  10. Siracusa G., Seminara A., Cucinotta V., Gurrieri S. // Thermochim. Acta. 1978. V. 23. № 1. P. 109. https://doi.org/10.1016/0040-6031(78)85116-8
  11. Gentile P.S., Campisi L.S. // J. Inorg. Nucl. Chem. 1965. V. 27. № 11. P. 2291. https://doi.org/10.1016/0022-1902(65)80119-1
  12. Kostyuk N.N. // Radiochemistry. 2005. V. 47. № 1. P. 153. https://doi.org/10.1007/s11137-005-0063-0
  13. Abate L., Siracusa G., Grasso D. // Thermochim. Acta. 1980. V. 42. № 2. P. 177. https://doi.org/10.1016/0040-6031(80)87101-2
  14. Zalkin A., Ruben H., Templeton H. // Inorg. Chem. 1979. V. 18. № 2. P. 519. https://doi.org/10.1021/ic50192a070
  15. Dalley N.K., Mueller M.H., Simonsen S.H. // Inorg. Chem. 972. V. 11. № 8. P. 1840. https://doi.org/10.1021/ic50114a020
  16. Acher E., Cherkaski Y.H., Dumas T. et al. // Inorg. Chem. 2016. V. 55. № 11. P. 5558. https://doi.org/10.1021/acs.inorgchem.6b00592
  17. Loubert G., Volkringer C., Henry N. et al. // Polyhedron. 2017. V. 138. № 14. P. 7. https://doi.org/10.1016/j.poly.2017.09.006
  18. Loubert G., Henry N., Volkringer C. et al. // Inorg. Chem. 2020. V. 59. № 16. P. 11459. https://doi.org/10.1021/acs.inorgchem.0c01258
  19. Nobuyoshi K., Masayuki H., Masanobu N. et al. // Inorg. Chim. Acta. 2005. V. 358. № 6. P. 1857. https://doi.org/10.1016/j.ica.2004.12.036
  20. Suzuki T., Takao K., Kawasaki T. et al. // Polyhedron. 2015. V. 96. № 16. P. 102. https://doi.org/10.1016/j.poly.2015.04.034
  21. Varga T.R., Sato M., Fazekas, Z. et al. // Inorg. Chem. Comm. 2000. V. 3. № 11. P. 637. https://doi.org/10.1016/S1387-7003(00)00123-4
  22. Takao K., Noda K., Morita Y. et al. // Cryst. Growth Des. 2008. V.8. № 7. P.2364. https://doi.org/10.1021/cg7012254
  23. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  24. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  25. Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS, 2008.
  26. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
  27. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 714. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  28. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  29. Лайков Д.Н., Устынюк Ю.А. // Изв. РАН/ Сер. хим. 2005. Т. 54. № 3. С. 804. (Laikov D.N., Ustynyuk Yu.A. // Russ. Chem. Bull. 2005. V. 54. № 3. P. 820). https://doi.org/10.1007/s11172-005-0329-x
  30. Handy N.C., Cohen A.J. // Mol. Phys. 2001. V. 99. P. 403. https://doi.org/10.1080/00268970010018431
  31. Laikov D.N. // J. Chem. Phys. 2019. V. 150. P. 061103. https://doi.org/10.1063/1.5082231
  32. Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. P. 116. https://doi.org/10.1016/j.cplett.2005.09.046
  33. Hansen P.E. // Molecules. 2021. V. 26. № 9. P. 2409. https://doi.org/10.3390/molecules26092409
  34. Рукк Н.С., Шамсиев Р.С., Альбов Д.В., Мудрецова С.Н. // Тонкие химические технологии. 2021. Т. 16. № 2. С. 113. (Rukk N.S., Shamsiev R.S., Al’bov D.V., Mudretsova S.N. // Fine Chem. Technol. 2021. V. 16. № 2. P. 113). https://doi.org/10.32362/2410-6593-2021-16-2-113-124
  35. Shi X., Bao W. // Front. Chem. 2021. V. 9. P.723718. https://doi.org/10.3389/fchem.2021.723718
  36. Накамото К. // ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. (Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, 1970).
  37. Комяк А.И., Умрейко Д.С., Последович М.Р. // Вест. БГУ. Сер. 1. 2013. № 1. C. 22. https://elib.bsu.by/handle/123456789/90097
  38. Bullock J.I. // J. Inorg. Nucl. Chem. 1967. V. 29. № 9. P.2257. https://doi.org/10.1016/0022-1902(67)80280-X
  39. Caldow G.L., Van Cleave A.B., Eager R.L. // Can. J. Chem. 1960. V. 38. № 6. P. 772. https://doi.org/10.1139/v60-112
  40. De Aquino A.R., Isolani P.C., Zukerman-Schpector J. et al. // J. Alloys Comp. 2001. V. 323. № 12. P. 18. https://doi.org/10.1016/S0925-8388(01)01000-3
  41. Saito Y., Machida K., Uno T. // Spectrochim. Acta. A. 1975. V. 31. № 9–10. P. 1237. https://doi.org/10.1016/0584-8539(75)80179-6

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Дополнительные материалы
Скачать (632KB)
3. Рис. 1. Строение соединений [UO2(L)2(NO3)2], где L = AA (a), PrA (б), MeUr (в) по данным РСА.

Скачать (618KB)
4. Рис. 2. Водородные связи в структуре I (а); фрагмент кристаллической упаковки структуры I (б).

Скачать (947KB)
5. Рис. 3. Фрагмент кристаллической упаковки структуры III. Пунктирными линиями показаны межмолекулярные водородные связи NH…O.

Скачать (581KB)
6. Рис. 4. Водородные связи в структуре V.

Скачать (241KB)
7. Рис. 5. Водородные связи в структуре VI.

Скачать (557KB)
8. Рис. 6. Равновесные геометрии соединений [UO2(L)2(NO3)2], где L = BzA (a), DMAA (б), VaA (в) по данным квантово-химических расчетов.

Скачать (686KB)

© Российская академия наук, 2025