Coordination Compounds of Cobalt(II) Nitrate and Perchlorate with Acetamide and Carbamide: Precursors for the Synthesis of Catalytically Active Tricobalt Tetraoxide
- 作者: Rodriguez Pineda R.A.1, Karavaev I.A.1, Savinkina E.V.1, Volchkova E.V.1, Pastukhova Z.Y.1, Bruk L.G.1, Buzanov G.A.2, Kubasov A.S.2, Retivov V.M.3
-
隶属关系:
- MIREA Russian Technological University
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Kurchatov Institute
- 期: 卷 50, 编号 5 (2024)
- 页面: 310-321
- 栏目: Articles
- URL: https://genescells.com/0132-344X/article/view/667598
- DOI: https://doi.org/10.31857/S0132344X24050039
- EDN: https://elibrary.ru/NKIPJK
- ID: 667598
如何引用文章
详细
The reactions of cobalt(II) nitrate or perchloride with acetamide (AA) or carbamide (Ur) in an aqueous medium produce coordination compounds [Co(Ur)4](NO3)2 (I), [Co(Ur)6](NO3)2 (II), [Co(AA)4(H2O)2](NO3)2 (III), [Co(AA)4(H2O)2](NO3)2 ∙ 2AA (IV), [Co(Ur)6](ClO4)2, (V), [Co(AA)4(H2O)2](ClO4)2 (VI), and [Co(AA)6](ClO4)2 (VII). The compositions of the isolated complexes are determined by physicochemical methods, and the crystal and molecular structures of compounds II, V, VI, and VII are solved. Specific features of the thermal behavior of all synthesized compounds in a wide temperature range are studied in detail. These compounds are shown to be used as precursors in the preparation of nanosized Co3O4 using self-propagating high-temperature synthesis. The catalytic activity of thus synthesized Co3O4 in the model epoxidation of allyl alcohol is studied.
全文:

作者简介
R. Rodriguez Pineda
MIREA Russian Technological University
编辑信件的主要联系方式.
Email: rodrigues.pineda@yandex.ru
俄罗斯联邦, Moscow
I. Karavaev
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
俄罗斯联邦, Moscow
E. Savinkina
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
俄罗斯联邦, Moscow
E. Volchkova
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
俄罗斯联邦, Moscow
Zh. Pastukhova
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
俄罗斯联邦, Moscow
L. Bruk
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
俄罗斯联邦, Moscow
G. Buzanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: rodrigues.pineda@yandex.ru
俄罗斯联邦, Moscow
A. Kubasov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: rodrigues.pineda@yandex.ru
俄罗斯联邦, Moscow
V. Retivov
Kurchatov Institute
Email: rodrigues.pineda@yandex.ru
俄罗斯联邦, Moscow
参考
- Vereshchagin, A.L. Preparativnyi samorasprostranyayushchiisya vysokotemperaturnyi sintez oksidov (Preparative Self-Propagating High-Temperature Synthesis of Oxides), Biisk, 2013.
- Merzhanov, A.G., Izv. Vysshikh. Uchebn. Zaved., 2006, no. 5, p. 5.
- Din, A., Akhtar, K., Karimov, Kh.S., et al., J. Mol. Liq., 2017, vol. 237, p. 266.
- Deng, J., Kang, L., Bai, G., et al., Electrochim. Acta, 2014, vol. 132, p. 127.
- Petrichko, M.I., Karavaev, I.A., Savinkina, E.V., et al., Russ. J. Inorg. Chem., 2023, vol. 68, no. 4, p. 415. https://doi.org/10.1134/S0036023623600193
- Zhuravlev, V.D., Bamburov, V.G., Beketov, A.R., et al., Ceram. Int., 2013, vol. 39, no. 2, p. 1379.
- Savinkina, E.V., Karavaev, I.A., Grigoriev, M.S., et al., Inorg. Chim. Acta, 2022, vol. 532, p. 120759.
- Podbolotov, K.B., Volochko, A.T., and Khort, A.A., Perspektivnye materialy i tekhnologii (Prospective Materials and Technologies), Klubovich, V.V., Ed., Vitebsk: UO VGTU, 2017, vol. 2, p. 171.
- Wen, W., Wu, J.-M., and Tu, J.-P., J. Alloys Comp., 2012, vol. 513, p. 592.
- Jung, J.C.Y., Sui, P.C., and Zhang, J., J. Energy Storage, 2021, vol. 35, p. 102217.
- Hu, X., Wei, L., Chen, R., et al., ChemSelect, 2020, vol. 5, no. 17, p. 5268.
- Vojisavljevic, K., Wicker, S., Can, I., et al., Adv. Powder Technol., 2017, vol. 28, no. 4, p. 1118.
- Ma, J., Wei, H., Liu, Y., et al., Int. J. Hydrogen Energy, 2020, vol. 45, p. 21205.
- Toniolo, J.C., Takimi, A.S., and Bergmann, C.P., Mater. Res. Bull., 2010, vol. 45, no. 6, p. 672.
- Groven, L.J., Pfeil, T.L., and Pourpoint, T.L., Int. J. Hydrogen Energy, 2013, vol. 38, no. 15, p. 6377.
- Luo, J. and Yathirajan, H.S., Ind. J. Mater. Sci., 2013, vol. 2014, p. 787306.
- Rau, T.F. and Kurkutova, E.N., Dokl. Akad. Nauk SSSR, 1971, vol. 204, no. 2, p. 342.
- Krawchuk, A. and Stadnicka, K., Acta Crystallogr., Sect. C: Cryst. Chem. Commun., 2007, vol. 63, p. 448.
- Rau, T.F. and Kurkutova, E.N., Dokl. Akad. Nauk SSSR, 1972, vol. 204, no. 3, p. 600.
- Gentile, P.S., White, J., and Haddad, S., Inorg. Chim. Acta, 1974, vol. 8, p. 97.
- Gentile, P.S., Carfagno, P., Haddad, S., et al., Inorg. Chim. Acta, 1972, vol. 6, p. 296.
- McGillicuddy, R.D., Thapa, S., Wenny, M.B., et al., J. Am. Chem. Soc., 2020, vol. 142, no. 45, p. 19170.
- SAINT, Madison: Bruker AXS Inc., 2018.
- Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, no. 1, p. 3.
- Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.
- Nakamoto, K., Infrared Spectra and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.
- Rosenthal, M.R., J. Chem. Educ., 1973, vol. 50, no. 5, p. 331.
- Nikishina, E.E., Tonkie Khim. Tekhnol., 2021, vol. 16, no. 6, p. 502.
- Shokri, A. and Fard, M.S., Environmental Challenges, 2022, vol. 7, p. 100534.
- Pastukhova, Zh.Yu., Levitin, V.V., Katsman, E.A., and Bruk, L.G., Kinet. Katal., 2021, vol. 62, no. 5, p. 551.
补充文件
