Dominance of intracellular maturation of brain-derived neurotrophic factor provides its retrograde influence in newly formed mouse motor synapses
- Авторлар: Bogacheva P.O.1, Potapova D.A.1, Gaydukov A.E.1
-
Мекемелер:
- Biology Department, Moscow Lomonosov State University
- Шығарылым: Том 42, № 4 (2025)
- Беттер: 264-276
- Бөлім: ***
- URL: https://genescells.com/0233-4755/article/view/696429
- DOI: https://doi.org/10.31857/S0233475525040021
- ID: 696429
Дәйексөз келтіру
Аннотация
Miniature endplate potentials (MEPPs) and multiquantal endplate potentials (EPPs) evoked by short rhythmic nerve stimulation were recorded in newly formed mouse neuromuscular junctions using intracellular microelectrode technique. The pathways of proteolysis (extra- or intracellular) of proBDNF to brain-derived neurotrophic factor (BDNF) in muscle fibers during their reinnervation were investigated. Matrix metalloprotease 3 (MMP-3) or intracellular proconvertase furin were selectively inhibited in combination with the release of endogenous neurotrophin from muscle fibers upon stimulation of protease-activated receptors (PAR1). It was confirmed that PAR1 stimulation leads to an increase of MEPP amplitude due to the release of endogenous BDNF from muscle fibers and its retrograde action which increases the size of acetylcholine (ACh) quanta. MMP-3 does not participate in BDNF maturation. Inhibition of furin resulted in a change in the synaptic effect upon PAR1 stimulation: an increase of MEPP amplitude was substituted by a decrease in MEPP frequency, which is characteristic of the action of proBDNF in newly formed synapses. Thus, it has been shown that by inhibiting furin activity, it is possible to stop the maturation of muscle BDNF at the proneurotrophin stage in weakened regenerating synapses and ultimately ensure the appearance of proBDNF in the synaptic cleft with its own spectrum of effects. This can change the balance of the retrograde influence of BDNF and its proneurotrophin on the signal transmission in newly formed motor synapses. Moreover, a change in such a balance can potentially influence not only the regulation of quantal ACh secretion, but also the rate and severity of reinnervation, since BDNF and proBDNF have opposite effects on the elimination of excessive synaptic contacts during embryogenesis or during post-traumatic muscle reinnervation.
Негізгі сөздер
Авторлар туралы
P. Bogacheva
Biology Department, Moscow Lomonosov State UniversityMoscow, 119234 Russia
D. Potapova
Biology Department, Moscow Lomonosov State UniversityMoscow, 119234 Russia
A. Gaydukov
Biology Department, Moscow Lomonosov State University
Email: gaydukov@gmail.com
Moscow, 119234 Russia
Әдебиет тізімі
- Zhang J., Kwan H.-L. R., Chan C.B., Lee C.W. 2025. Localized release of muscle-generated BDNF regulates the initial formation of postsynaptic apparatus at neuromuscular synapses. Cell Death Differ. 32, 546–560. https://doi.org/10.1038/s41418-024-01404-4
- Aby K., Antony R., Yang T., Longo F.M., Li Y. 2025. ProBDNF as a myokine in skeletal muscle injury: Role in inflammation and potential for therapeutic modulation of p75NTR. Int. J. Mol. Sci. 26, 401. https://doi.org/10.3390/ijms26010401
- Je H.S., Yang F., Ji Y., Potluri S., Fu X.-Q., Luo Z.-G., Nagappan G., Chan J.P., Hempstead B., Son Y.-J., Lu B. 2013. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J. Neurosci. 33, 9957–9962. https://doi.org/10.1523/jneurosci.0163-13.2013
- Bogacheva P.O., Molchanova A.I., Pravdivceva E.S., Miteva A.S., Balezina O.P., Gaydukov A.E. 2022. ProBDNF and brain-derived neurotrophic factor prodomain differently modulate acetylcholine release in regenerating and mature mouse motor synapses. Front. Cell. Neurosci. 16, 866802. https://doi.org/10.3389/fncel.2022.866802
- Bogacheva P.O., Potapova D.A., Gaydukov A.E. 2025. Sortilin and L-type calcium channels may be involved in the unusual mechanism of proBDNF signaling in regenerating mouse neuromuscular junctions. Neurochem. Res. 50, 104. https://doi.org/10.1007/s11064-025-04360-8
- Pang P.T., Teng H.K., Zaitsev E., Woo N.T., Sakata K., Zhen S., Teng K.K., Yung W.-H., Hempstead B.L., Lu B. 2004. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 306, 487–491. https://doi.org/10.1126/science.1100135
- Kowiański P., Lietzau G., Czuba E., Waśkow M., Steliga A., Moryś, J. 2018. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 38, 579–593. https://doi.org/10.1007/s10571-017-0510-4
- Aby K., Antony R., Eichholz M., Srinivasan R., Li Y. 2021. Enhanced pro-BDNF-p75NTR pathway activity in denervated skeletal muscle. Life Sci. 286, 120067. https://doi.org/10.1016/j.lfs.2021.120067
- Gaydukov A.E., Akutin I.A., Bogacheva P.O., Balezina O.P. 2018. Changes in the parameters of quantal acetylcholine release after activation of PAR1-type thrombin receptors at the mouse neuromuscular junctions. Biochem. Mosc. Suppl. Ser. А Membr. Cell Biol. 12, 33–42. https://doi.org/10.1134/S1990747818010063
- Gaydukov A., Bogacheva P., Tarasova E., Molchanova A., Miteva A., Pravdivceva E., Balezina O. 2019. Regulation of acetylcholine quantal release by coupled thrombin/BDNF signaling in mouse motor synapses. Cells. 8, 762. https://doi.org/10.3390/cells8070762
- Fujita T., Liu T., Nakatsuka T., Kumamoto E. 2009. Proteinase-activated receptor-1 activation presynaptically enhances spontaneous glutamatergic excitatory transmission in adult rat substantia gelatinosa neurons. J. Neurophysiol. 102, 312–319. https://doi.org/10.1152/jn.91117.2008
- Wiera G., Nowak D., van Hove I., Dziegiel P., Moons L., Mozrzymas J.W. 2017. Mechanisms of NMDA receptor- and voltage-gated L-type calcium channel-dependent hippocampal LTP critically rely on proteolysis that is mediated by distinct metalloproteinases. J. Neurosci. 37, 1240–1256. https://doi.org/10.1523/jneurosci.2170-16.2016
- Vansaun M., Herrera A.A., Werle M.J. 2003. Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. J. Neurocytol. 32, 1129–1142. https://doi.org/10.1023/b:neur.0000021907.68461.9C
- Lee R., Kermani P., Teng K.K., Hempstead B.L. 2001. Regulation of cell survival by secreted proneurotrophins. Science. 294, 1945–1948. https://doi.org/10.1126/science.1065057
- Van Hove I., Lemmens K., Van de Velde S., Verslegers M., Moons L. 2012. Matrix metalloproteinase-3 in the central nervous system: A look on the bright side. J. Neurochem. 123, 203–216. https://doi.org/10.1111/j.1471-4159.2012.07900.x
- Wang M., Xie Y., Qin D. 2021. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res. Bull. 166, 172–184. https://doi.org/10.1016/j.brainresbull.2020.11.005
- Zhang Y., Gao X., Bai X., Yao S., Chang Y.-Z., Gao G. 2022. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl. Neurodegener. 11, 39. https://doi.org/10.1186/s40035-022-00313-1
- Douglas L.E.J., Reihill J.A., Ho M.W.Y., Axten J.M., Campobasso N., Schneck J.L., Rendina A.R., Wilcoxen K.M., Martin S.L. 2022. A highly selective, cell-permeable furin inhibitor BOS-318 rescues key features of cystic fibrosis airway disease. Cell Chem. Biol. 29, 947–957.e8. https://doi.org/10.1016/j.chembiol.2022.02.001
- Ivachtchenko A.V., Khvat A.V., Shkil D.O. 2024. Development and prospects of furin inhibitors for therapeutic applications. Int. J. Mol. Sci. 25, 9199. https://doi.org/10.3390/ijms25179199
- Je H.S., Yang F., Ji Y., Nagappan G., Hempstead B.L., Lu B. 2012. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc. Natl. Acad. Sci. USA. 109, 15924–15929. https://doi.org/10.1073/pnas.1207767109
- Lanuza M.A., Garcia N., González C.M., Santafé M.M., Nelson P.G., Tomàs J. 2003. Role and expression of thrombin receptor PAR-1 in muscle cells and neuromuscular junctions during the synapse elimination period in the neonatal rat. J. Neurosci. Res. 73, 10–21. https://doi.org/10.1002/jnr.10576
- Lanuza M.A., Besalduch N., Garcia N., Sabaté M., Santafé M.M., Tomàs J. 2007. Plastic-embedded semithin cross-sections as a tool for high-resolution immunofluorescence analysis of the neuromuscular junction molecules: Specific cellular location of protease-activated receptor-1. J. Neurosci. Res. 85, 748–756. https://doi.org/10.1002/jnr.21192
- Tamura S., Suzuki H., Hirowatari Y., Hatase M., Nagasawa A., Matsuno K., Kobayashi S., Moriyama T. 2011. Release reaction of brain-derived neurotrophic factor (BDNF) through PAR1 activation and its two distinct pools in human platelets. Thromb. Res. 128, e55–e61. https://doi.org/10.1016/j.thromres.2011.06.002
- Price R., Mercuri N.B., Ledonne A. 2021. Emerging roles of protease-activated receptors (PARs) in the modulation of synaptic transmission and plasticity. Int. J. Mol. Sci. 22, 869. https://doi.org/10.3390/ijms22020869
- Chandrabalan A., Ramachandran R. 2021. Molecular mechanisms regulating proteinase-activated receptors (PARs). FEBS J. 288, 2697–2726. https://doi.org/10.1111/febs.15829
- Macfarlane S.R., Seatter M.J., Kanke T., Hunter G.D., Plevin R. 2001. Proteinase-activated receptors. Pharmacol. Rev. 53, 245–282. https://doi.org/10.1016/S0031-6997(24)01493-5
- Tomàs J., Cilleros-Mañé V., Just-Borràs L., Balanyà-Segura M., Polishchuk A., Nadal, L., Tomàs M., Silvera-Simón C., Santafé M.M., Lanuza M.A. 2025. Brain-derived neurotrophic factor signaling in the neuromuscular junction during developmental axonal competition and synapse elimination. Neural Regen. Res. 20, 394–401. https://doi.org/10.4103/1673-5374.391314
- Hurtado E., Cilleros V., Nadal L., Simó A., Obis T., Garcia N., Santafé M.M., Tomàs M., Halievski K., Jordan C.L., Lanuza M.A., Tomàs J. 2017. Muscle contraction regulates BDNF/TrkB signaling to modulate synaptic function through presynaptic cPKCα and cPKCβI. Front. Mol. Neurosci. 10, 147. https://doi.org/10.3389/fnmol.2017.00147
- Soliman M., Seo J.-Y., Kim D.-S., Kim J.-Y., Park J.-G., Alfajaro M.M., Baek Y.-B., Cho E.-H., Kwon J., Choi J.-S., Kang M.-I., Park S.-I., Cho K.-O. 2018. Activation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating. PLOS Pathog. 14, e1006820. https://doi.org/10.1371/journal.ppat.1006820
- Leßmann V., Brigadski T. 2009. Mechanisms, locations, and kinetics of synaptic BDNF secretion: An update. Neurosci. Res. 65, 11–22. https://doi.org/10.1016/j.neures.2009.06.004
- Mowla S.J., Pareek S., Farhadi H.F., Petrecca K., Fawcett J.P., Seidah N.G., Sossin W.S., Murphy R.A. 1999. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 19, 2069–2080. https://doi.org/10.1523/jneurosci.19-06-02069.1999
- Matsumoto T., Rauskolb S., Polack M., Klose J., Kolbeck R., Korte M., Barde Y.-A. 2008. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat. Neurosci. 11, 131–133. https://doi.org/10.1038/nn2038
- Chen Y., Zhang J., Deng M. 2015. Furin mediates brain-derived neurotrophic factor upregulation in cultured rat astrocytes exposed to oxygen–glucose deprivation. J. Neurosci. Res. 93, 189–194. https://doi.org/10.1002/jnr.23455
- Seidah N.G., Benjannet S., Pareek S., Chrétien M., Murphy R.A. 1996. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 379, 247–250. https://doi.org/10.1016/0014-5793(95)01520-5
- Wetsel W.C., Rodriguiz R.M., Guillemot J., Rousselet E., Essalmani R., Kim I.H., Bryant J.C., Marcinkiewicz J., Desjardins R., Day R., Constam D.B., Prat A., Seidah N.G. 2013. Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice. Proc. Natl. Acad. Sci. 110, 17362–17367. https://doi.org/10.1073/pnas.1314698110
- Zhang X.-Y., Liu F., Chen Y., Guo W.-C., Zhang Z.-H. 2020. Proprotein convertase 1/3-mediated down-regulation of brain-derived neurotrophic factor in cortical neurons induced by oxygen-glucose deprivation. Neural Regen. Res. 15, 1066–1070. https://doi.org/10.4103/1673-5374.270314
- Aby K., Antony R., Li Y. 2023. ProBDNF upregulation in murine hind limb ischemia reperfusion injury: a driver of inflammation. Biology. 12, 903. https://doi.org/10.3390/biology12070903
- Pang P.T., Nagappan G., Guo W., Lu B. 2016. Extracellular and intracellular cleavages of proBDNF required at two distinct stages of late-phase LTP. Npj Sci. Learn. 1, 1–10. https://doi.org/10.1038/npjscilearn.2016.3
- Cao W., Duan J., Wang X., Zhong X., Hu Z., Huang F., Wang H., Zhang J., Li F., Zhang J., Luo X., Li C.-Q. 2014. Early enriched environment induces an increased conversion of proBDNF to BDNF in the adult rat’s hippocampus. Behav. Brain Res. 265, 76–83. https://doi.org/10.1016/j.bbr.2014.02.022
Қосымша файлдар



