Effect of “dry” immersion on the performance characteristics of a visual-motor task using a joystick depending on the direction of hand movement
- Authors: Zobova L.N.1, Miller N.V.1
-
Affiliations:
- State Scientific Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences
- Issue: Vol 39, No 2 (2025)
- Pages: 88-99
- Section: SOMATOSENSORY SYSTEM
- URL: https://genescells.com/0235-0092/article/view/687722
- DOI: https://doi.org/10.31857/S0235009225020041
- ID: 687722
Cite item
Abstract
Issues related to controlling arm movements in space flight (SF) are extremely important. The success of an operator’s activities depends on the safety of the SF. To study the impact of the SF factor (support unloading), a ground-based “Dry” Immersion (DI) model is used. The study was conducted for 7 days under DI conditions. During the visual-motor task, 10 participants moved the cursor from the center of the screen to randomly appearing peripheral targets using a joystick. The DI effect on cursor movement parameters in four directions was evaluated. There were differences in time and accuracy depending on the hand movement direction in control studies that persisted during and after DI exposure. In the early days of DI, most estimated cursor movement parameters deteriorated, regardless of the direction. By the end of the immersion, they had recovered. The degree of DI influence on cursor movement differed depending on the direction of hand movement, and was most pronounced at the beginning of DI. There was minimal impact of DI on movement from left to right.
Full Text

About the authors
L. N. Zobova
State Scientific Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences
Author for correspondence.
Email: lnz75@mail.ru
Russian Federation, 123007, Moscow
N. V. Miller
State Scientific Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences
Email: lnz75@mail.ru
Russian Federation, 123007, Moscow
References
- Badakva A.M., Miller N.V., Zobova L.N., Roshchin V.Yu. Studies of the planar unloading effect on cortical mechanisms of arm movements control in immersion experiments with primates. Aviakosmicheskaya i Ekologicheskaya Meditsina. 2019. V. 53 (3). P. 33–38. doi: 10.21687/0233-528X-2019-53-3-33-38. (in Russian).
- Badakva A.M., Miller N.V., Zobova L.N., Roschin V.Y. Influence of water immersion of monkeys on the activity of posterior parietal cortex structures involved in planning and correcting hand movements in performing a motor task. Hum. Physiol. 2021. V. 47(3). P. 254-259. doi: 10.1134/S0362119721030038.
- Bernshtein N.A. Physiology of movement and activity. Moscow. Meditsina Publ. 1966. 349 p. (in Russian).
- Kozlovskaya I.B. Gravity and the tonic postural motor system. Aviakosmicheskaya i Ekologicheskaya Meditsina. 2017. V. 51(3). P. 5–21. doi: 10.21687/0233-528X-2017-51-3-5-21 (in Russian).
- Kornilova L. N., Glukhikh D., Habarova E., et al. Visual –manual tracking after long spaceflights. Hum. Physiol. 2016. V. 42. P. 301-311. doi: 10.1134/S0362119716030105
- Kornilova, L.N., Naumov, I.A., Glukhikh, D.O. et al. Vestibular function and space motion sickness. Hum. Physiol. 2017. V. 43. P. 557-568. doi: 10.1134/S0362119717050085.
- Lyakhovetskii V.A., Zelenskaya I.S., Karpinskaya V.Yu, Bekreneva M.P., Zelenskiy K.A., and Tomilovskaya E.S. Influence of dry immersion on the characteristics of cyclic precise hand movements. Hum. Physiol. 2022. V. 48. P. 655–661. doi: 10.1134/S0362119722600291.
- Miller N.V., Zobova L.N., Roschin V.Y., Badakva A.M. Procedure of check testing in the process of studying the effects of dry immersion on characteristics of performing s motor-ocular task. Aviakosmicheskaya i Ekologicheskaya Meditsina. 2024. V. 58(1). P. 88-93. doi: 10.21687/0233-528X-2017-51-3-5-21. (in Russian).
- Miller N.V., Zobova L.N., Badakva A.M. The Effect of Dry Immersion on the Characteristics of Joystick Control during the Performance of a Visual-Motor Task in Men and Women// Hum. Physiol. 2024. V. 50 (4). P. 358-365. doi: 10.1134/S0362119724700804.
- Berger M., Mescheriakov S., Molokanova E., Lechner-Steinleitner S., Seguer N., Kozlovskaya I. Pointing arm movements in short and long_term space flights. Aviat. Space Environ. Med. 1997. V. 68(9). P. 781.
- Boritz J., Booth K.S., Cowan W.B. Fitts’s law studies of directional mouse movement. Human performance. 1991. V. 1 (6). P. 216-223.
- Gordon J., Ghilardi M.F., Cooper S.E., Ghez C. Accuracy of planar reaching movements: II. Systematic extent errors resulting from inertial anisotropy. Experimental brain research. 1994. V. 99. P. 112-130. doi: 10.1007/BF00241416
- Fisk J.D., Goodale M.A. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space. Exp. Brain Res. 1985. V. 60(1). P. 159-178. doi: 10.1007/BF00237028.
- Gaveau J., Paizis C., Berret B., Pozzo T., Papaxanthis C. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning. Journal of neurophysiology. 2011. V. 106(2). P. 620-629. doi: 10.1152/jn.00081.2011
- Holden K., Greene M., Vincent Cross E., Sándor A., Thompson S., Feiveson A., Munson B. Effects of long-duration microgravity and gravitational transitions on fine motor skills. Human Factors. 2023. V. 65(6). P. 1046-1058. doi: 10.1177/00187208221084486
- Kozlovskaya I.B. The nature and characteristics of a gravitational ataxia. Physiologist. 1983. V. 26, P. 108–109.
- Mechtcheriakov, S., Berger, M., Molokanova, E., Holzmueller G., Wirtenberger W., Lechner-Steinleitner S., De Col C., Kozlovskaya I., Gerstenbrand F. Slowing of human arm movements during weightlessness: the role of vision. Eur. J. Appl. Physiol. 2002. V. 87(6). P. 576-583. doi: 10.1007/s00421-002-0684-3.
- Murata A., Iwase H. Extending Fitts’ law to a three-dimensional pointing task. Human movement science. 2001. V. 20(6). P. 791-805. doi: 10.1016/S0167-9457(01)00058-6
- Okuuchi S., Tani K., Kushiro K. Temporal properties of the speed-accuracy trade-off for arm-pointing movements in various directions around the body. Plos one. 2023. V. 18(9). P. e0291715. doi: 10.1371/journal.pone.0291715.
- Paloski, W.H., Oman, C.M., Bloomberg, J.J., Reschke M.F., Wood1 S.J., Harm D.L., Peters B.T., Mulavara A.P., Locke J.P., Stone L.S. Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence. J. Gravity Physiol. 2008. V. 15(2). P. 1–29.
- Papaxanthis C., Pozzo T., Popov K.E., McIntyre J. Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force. Exp. Brain Res. 1998. V. 120(4). P. 496-502. doi: 10.1007/s002210050423.
- Papaxanthis C., Pozzo T., McIntyre J. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity //Neuroscience. 2005. V. 135(2). P. 371-383. doi: 10.1016/j.neuroscience.2005.06.063.
- Pechenkova E., Nosikova I., Rumshiskaya A., Litvinova L., Rukavishnikov I., Mershina E., Sinitsyn V., Van Ombergen A., Jeurissen B., Jillings S., Laureys S., Sijbers J., Grishin A., Chernikova L., Naumov I., Kornilova L., Wuyts F.L., Tomilovskaya E., Kozlovskaya I. Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Front. Physiol. 2019. V. 10. Article 761. doi: 10.3389/fphys.2019.00761.
- Tomilovskaya E., Shigueva T., Sayenko D., Rukavishnikov I., Kozlovskaya I. Dry immersion as a ground-based model of microgravity physiological effects. Front. Physiol. 2019. V. 10. Article. 284. doi: 10.3389/fphys.2019.00284.
- Tomsia M., Cieśla J., Śmieszek J., Florek S., Macionga A., Michalczyk K., Stygar D. Long-term space missions’ effects on the human organism: what we do know and what requires further research. Front. Physiol. 2024. V. 15. Article. 1284644. doi: 10.3389/fphys.2024.1284644.
Supplementary files
