Statistical characteristics of the internal structure of the seismic background over a hydrocarbon deposit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The fine structure of seismic background in the territory of an oil field was studied using polyspectral analysis and surrogate models. Statistical test for Gaussianity and linearity showed that natural seismic background in the frequency range of 1–50 Hz is a nonlinear process. Bicoherence graphs revealed statistically significant peaks of phase-related triplets with a characteristic geometry of peak clustering in the main triangular region. To analyze the quasi-noise component of the seismic background, surrogate time series with a randomized phase spectrum were generated, the bispectra of which are free of triplet peaks. Bispectral analysis of surrogate series showed the presence of a non-Gaussian quasi-noise component in the seismic background in the frequency range of 1–6 Hz. Previously, the results of the analysis of the used set of records by two completely different methods, each of which extracts information from different components of the seismic background — quasi-noise and regular, were published. These studies showed that each of the two components contains information sufficient to estimate the total thickness of the productive intervals under the recording point. Based on the results of the bispectral analysis and the features of the algorithms of the two methods, a conclusion was made that the quadratically phase-related triplets and the non-Gaussian quasi-noise component in the field territory are manifestations of endogenous seismic emission and are generated by the same nonlinear process developing in the vicinity of an oil-saturated reservoir. The mechanism of seismic emission should be sought in the class of phenomena with quadratic nonlinearity. The statistical characteristics of the internal structure of the seismic background near oil wells have similar features that differ greatly from the statistical characteristics of the seismic record near a “dry” well located outside the reservoir and not producing oil. Previously unknown prognostic features of the oil/water saturation type of rocks have been identified.

Full Text

Restricted Access

About the authors

I. Ya. Chebotareva

Oil and Gas Research Institute, Russian Academy of Sciences

Author for correspondence.
Email: irinache@inbox.ru
Russian Federation, Moscow, 119333

References

  1. Арутюнов С.Л., Давыдов В.Ф., Кузнецов О.Л., Графов Б.М., Сиротинский Ю.В. Диплом на открытие 109. Явление генерации инфразвуковых волн нефтегазовой залежью. Опубл. 25.12.98 // Научные открытия (сб. кратк. опис.). М., СПб.: РАЕН. 1999. Вып. 1. 58 с.
  2. Графов Б.М., Арутюнов С.Л., Казаринов В.Е., Кузнецов О.Л., Сиротинский Ю.В., Сунцов А.Е. Анализ геоакустического излучения нефтегазовой залежи при использовании технологии АНЧАР // Геофизика. 1998. № 5. С. 24–28.
  3. Holzner R., Eschle P., Zurcher H., Lambert M., Graf R., Dangel S., Meier P.F. Microtremor analysis to identify hydrocarbon reservoirs // First break. 2005. V. 23. № 5. P. 41–46. https://doi.org/10.3997/1365-2397.23.5.26560
  4. Lambert M.-A., Schmalholz S.M., Saenger E.H., Steiner B. Low-frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria // Geophysical Prospecting. 2009. V. 57. № 3. P. 393–411. https://doi.org/10.1111/j.1365-2478.2008.00734.x
  5. Makhous M., Rode E.D. (Paul), Kaya S. Application of the Infrasonic Passive Differential Spectroscopy (IPDS) for Hydrocarbon Direct Detection and Reservoir Monitoring in fields of the North-Caspian Basin: Achievements and Challenges // Abstracts. № SPE 125385. Reservoir Characterization and Simulation Conf. Abu Dhabi, UAE, 19–21 October. 2009. https://doi.org/10.2118/125385-MS
  6. Rode E.D., Nasr H., Makhous M. Is the future of seismic passive? // First break. 2010. V. 28. № 7. P. 77–80. https://doi.org/10.3997/1365-2397.28.7.40647
  7. Перспективный метод поиска нефтегазовых залежей. Беседа с академиком А.Ю. Цивадзе // Вестник РАН. 2014. Т. 84. № 3. С. 249–252. https://doi.org/10.7868/s0869587314030207
  8. Chebotareva I.Ya., Rode E.-D. Dissipative Seismicity for Hydrocarbon Reservoir Parameter Evaluation // Izvestiya, Physics of the Solid Earth. 2023. V. 59. № 4. Р. 650–661. https://doi.org/10.1134/S1069351323040031
  9. Чеботарева И.Я. Геофизические предпосылки нелинейного механизма формирования низкочастотной сейсмической аномалии над залежами углеводородов // Геофизические исследования. 2024. Т. 25. № 1. С. 86–102. https://doi.org/10.21455/gr2024.1-6
  10. Чеботарева И.Я., Дмитриевский А.Н. Диссипативная сейсмика // Физическая мезомеханика. 2020. Т. 23. № 1. С. 14–32. https://doi.org/10.24411/1683-805X-2020-11002
  11. Климонтович Ю.Л. Статистическая теория открытых систем. Т. 1. М.: Янус, 1995. 624 С.
  12. Кудрявцев Н.А. Генезис нефти и газа. Л.: Недра, 1973. 216 с.
  13. Pirson S.J. Significant Advances in Magneto-electric Exploration. Unconventional Methods in Exploration for Petroleum and Natural Gas // Proc. Symp. II-1979 Ed. Gottlieb B.M. Dallas, Texas: Southern Methodist University Press, 1981. P. 169–196.
  14. Makhous M., Rode E.D. (Paul), Kaya S. Application of the Infrasonic Passive Differential Spectroscopy (IPDS) for Hydrocarbon Direct Detection and Reservoir Monitoring in fields of the North-Caspian Basin: Achievements and Challenges // Abstracts. SPE 125385. Reservoir Characterization and Simulation Conf. Abu Dhabi, UAE, 19–21 October. 2009.
  15. Напреев Д.В., Оленченко В.В. Комплексирование геофизических и геохимических методов при поиске залежей углеводородов в Усть-Тымском нефтегазоносном районе // Нефтегазовая геология. Теория и практика. 2010. Т. 5. № 1. 8 с. http://www.ngtp.ru/rub/4/6_2010.pdf
  16. Валяев Б.М. Углеводородная дегазация Земли, геотектоника и происхождение нефти и газа // Дегазация Земли и генезис нефтегазовых месторождений. К 100-летию со дня рождения П.Н. Кропоткина. Ред. Дмитриевский А.Н., Валяев Б.М. М.: ГЕОС, 2011. С. 10–30.
  17. Кукуруза В.Д., Кривошеев В.Т., Иванова Е.З., Пекельная Е.В. Геоэлектрическая модель углеводородной залежи // Геоинформатика. 2019. № 4. С. 50–55.
  18. Shaidurov G.Ya., Kudinov D.S., Potylitsyn V.S., Shaidurov R.G. Observation of the seismoelectric effect in a gas condensate field in the Earth’s natural electromagnetic and seismic // Russian Geology and Geophysics. 2018. V. 59. № 5. P. 566–570.
  19. Турунтаев С.Б., Мельчаева О.Ю. Анализ триггерных сейсмических процессов при помощи методов нелинейной динамики // Триггерные эффекты в геосистемах. Материалы Всероссийского семинара-совещания. Ред. Адушкин В.В., Кочарян Г.Г. 2010. С. 124–136.
  20. Турунтаев С.Б., Ворохобина С.В., Мельчаева О.Ю. Выявление техногенных изменений сейсмического режима при помощи методов нелинейной динамики // Физика Земли. 2012. № 3. С. 52–65.
  21. Chebotareva I.Ya. Remote Evaluation of Hydrocarbon Reservoir Productivity under Big Noisiness // J. Mining Science. 2022. V. 58. № 3. P. 366–375. https://doi.org/10.1134/S1062739122030036
  22. Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J.D. Testing for nonlinearity in times series: the method of surrogate data // Physica D. 1992. V. 58. Pp. 77–94. https://doi.org/10.1016/0167-2789(92)90102-S
  23. Астахова Д.И., Сысоева М.В., Сысоев И.В. Влияние нелинейности на оценки связанности осцилляторов методом частной направленной когерентности // Известия вузов. Прикладная нелинейная динамика. 2019. Т. 27. Вып. 6. С. 8–24. https://doi.org/10.18500/0869-6632-2019-27-6-8-24
  24. Chavez M., Cazelles B. Detecting dynamic spatial correlation patterns with generalized wavelet coherence and non-stationary surrogate data // Scientific Reports 9. 2019. V. 9. Art. No 7389. 9 p. https://doi.org/10.1038/s41598-019-43571-2
  25. Hirata Y., Shiro M., Amigo J.M. Surrogate Data Preserving All the Properties of Ordinal Patterns up to a Certain Length // Entropy. 2019. V. 21. № 7. 713. 16 p. https://doi.org/10.3390/e21070713
  26. Keylock C.J. Hypothesis testing for nonlinear phenomena in the geosciences using synthetic, surrogate data // Earth and Space Science. 2019. V. 6. № 1. P. 41–58. https://doi.org/10.1029/2018EA000435
  27. Жегулин Г.В., Зимин А.В. Применение биспектрального вейвлет-анализа для поиска трехволновых взаимодействий в спектре внутренних волн // Морской гидрофизический журнал. 2021. Т. 37. № 2. С. 147–161. https://doi.org/10.22449/0233-7584-2021-2-147-161
  28. Гурбатов С.Н., Малахов А.Н., Прончатое-Рубцов Н.В. Об использовании спектров высших порядков в задаче диагностики интенсивных акустических шумов // Акуст. журн. 1987. Т. 33. № 5. С. 944–946.
  29. Гурбатов С.Н., Демин И.Ю., Прончатов-Рубцов Н.В. Об использовании биспектрального анализа в обратных задачах нелинейной акустики // Акуст. журн. 2017. Т. 63. № 6. С. 596–601.
  30. Schulte J., Policelli F., Zaitchik B. A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship // Nonlinear Processes in Geophysics. 2022. V. 29. № 1. P. 1–15. https://doi.org/10.5194/npg-29-1-2022
  31. Abroug I., Abcha N., Jarno A., Marin F. Laboratory study of non-linear wave–wave interactions of extreme focused waves in the nearshore zone // Natural Hazards and Earth System Sciences. 2020. V. 20. P. 3279–3291. https://doi.org/10.5194/nhess-20-3279-2020
  32. Gelman L., Solinski K., Ball A. Novel Higher-Order Spectral Cross-Correlation Technologies for Vibration Sensor-Based Diagnosis of Gearboxes // Sensors. 2020. V. 20. 5131. P. 1–23. https://doi.org/10.3390/s20185131
  33. Малахов А.Н. Кумулянтный анализ случайных негауссовых процессов и их преобразований. М.: Советское радио, 1978. 374 с.
  34. Sanaullah M. A review of higher order statistics and spectra in communication systems // Global journal of science frontier research. Physics and space science. 2013. V. 13. № 4. P. 31–50. https://doi.org/10.34257/GJSFRAVOL13IS4PG31
  35. Elgar S., Sebert G. Statistics of bicoherence and biphase // J. Geophysical Research. 1989. V. C94. P. 10993–10998. https://doi.org/10.1029/JC094iC08p10993
  36. Монахов Ф.И. Низкочастотный сейсмический шум Земли. М.: Наука, 1977. 95 с.
  37. Винник Л.П. Структура микросейсм и некоторые вопросы группирования в сейсмологии. М.: Наука, 1968. 104 с.
  38. Ryzhov V., Ryzhov D., Sharapov I., Feofilov S., Smirnov T., Starostin I., Bitrus R.P., Chichester B. Offshore field trial application of low-frequency passive microseismic technology in the North Sea for exploration, appraisal and development of hydrocarbon deposits // First break. 2021. V. 39. № 4. P. 45–50. https://doi.org/10.3997/1365-2397.fb2021027
  39. Birkelo B., Duclos M., Artman B., Schechinger B., Witten B., Goertz A., Weemstra K., Spectraseis A.G., Hadidi M.T. A passive low-frequency seismic survey in Abu Dhabi–Shaheen project // SEG Denver 2010 Annual Meeting. 2010. P. 2207–2211.
  40. Groos J.C. and Ritter J.R.R. Time domain classification and quantification of seismic noise in an urban environment // Geophys. J. Int. 2009. V. 179. P. 1213–1231. https://doi.org/10.1111/j.1365-246X.2009.04343.x
  41. Hinich M.J. Testing for Gaussianity and Linearity of a Stationary Time Series // J. Time Series Analysis. 1982. V. 3. № 3. P. 169–176. https://doi.org/10.1111/j.1467-9892.1982.tb00339.x
  42. Hinich M.J., Mendes E.M., Stone L. Detecting Nonlinearity in Time Series: Surrogate and Bootstrap Approaches // Studies in Nonlinear Dynamics & Econometrics. 2005. V. 9. № 4. P. 1–13. https://doi.org/10.2202/1558-3708.1268
  43. Birkelund Y., Hanssen A. Improved bispectrum based tests for Gaussianity and linearity // Signal Processing. 2009. V. 89. № 12. P. 2537–2546. https://doi.org/10.1016/j.sigpro.2009.04.013
  44. Hinich M.J., Wolonsky M.A. A test for aliasing using bispectral analysis // J. Amer. Stat. Assoc. 1988. V. 83. P. 499–502.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Information on previous studies: (a) — scheme of the field work site with the location of wells (black triangles) and the grid of tectonic faults; linear dependences on the total thickness of productive intervals in wells NPZ of the values ​​of dimensionless quantitative indicators of productivity (b) — TI for the TI method and (c) — RHI for the IPDS method [6, 8].

Download (150KB)
3. Fig. 2. Dependence on the number of the sliding time window N of the probability P of correct acceptance of the hypothesis H0 (upper row) — on Gaussianity using the Dg statistics, surrogate series type FT; (lower row) — on linearity using the Dl statistics, surrogate series type AAFT. Types of model time series: stochastic (C1) — Gaussian and (C2) — non-Gaussian, linear (C3) — Gaussian and (C4) — non-Gaussian, (C5, C6) — non-linear.

Download (123KB)
4. Fig. 3. Probability P of correct acceptance of hypothesis H0 about Gaussianity (upper row) and hypothesis H0 about linearity (middle row) depending on the number of the sliding time window N for seismic background records near wells N1, N2, N0; (lower row) — values ​​of time series dispersion D normalized to the maximum. The dashed line marks the boundary of the critical region P* = 1 − α at the significance level α = 0.06.

Download (266KB)
5. Fig. 4. Bi-coherence plots calculated based on the seismic background record near well N2 (left) — for the original seismic record and (right) — for surrogate time series. Normalized to the maximum.

Download (140KB)
6. Fig. 5. Statistical characteristic of the second order of the structure of the quasi-noise component of the seismic background near oil wells. Averaged along the direction f1+f2 = const values ​​of the bi-coherence matrices for seismic noise records near oil wells (upper row) — for the original seismic records and (lower row) — for surrogate time series. Normalized to the common maximum for each type of series. The position of the wells is shown in Fig. 1. The dashed line is the average value for Gaussian noise.

Download (150KB)
7. Fig. 6. Statistical characteristics of the second order of the structure of the regular component of the seismic background near oil wells. Statistically significant peaks of the bicoherence matrix corresponding to phase-related triplets. Top and bottom: results of two different methods of rejecting smaller values. Description in text. The location of the wells is shown in Fig. 1.

Download (111KB)
8. Fig. 7. Statistical characteristics of the second order of the structure of the quasi-noise and regular components of the seismic background: (a) — results averaged over the recording points for the quasi-noise component of the seismic background near oil wells, shown in Fig. 5, and (b) — calculated based on the seismic background record near a “dry” well; (top) — results for the original records, (bottom) — for surrogate time series. Matrices of peaks caused by phase-related triplets: (c) — calculated based on the seismic background records near oil wells, Fig. 6, and summed, (g) — calculated from the seismic background recording near the “dry” well; (top) and (bottom) — results of two different methods of rejecting smaller values. The vertical line marks the 6 Hz boundary. The dashed line — the average values ​​for Gaussian noise. The inclined lines are described by equation (14).

Download (142KB)

Copyright (c) 2025 The Russian Academy of Sciences