Vibrational Black Hole for Torsional Waves Propagating Through a Rod of Variable Cross-Section

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The propagation of torsional waves through rods of variable cross-section is considered. With a linear increase in the flattening of the rod, the propagation velocity of the torsional wave decreases linearly and turns to zero at the end of the rod. Yet, the propagation time to the sharpened end is equal to infinity. Such a decelerating structure is called a vibrational black hole in modern terminology. Exact solutions of the equation of torsional vibrations of a sharpened rod with a moment of inertia and a moment of torsion in the form of power functions are given. Corresponding expressions for the input impedance at the initial cross-section are obtained.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Mironov

Andreev Acoustics Institute

Хат алмасуға жауапты Автор.
Email: mironov_ma@mail.ru
Ресей, 4 Shvernik str., Moscow, Russia, 117292

Әдебиет тізімі

  1. Миронов М.А. Распространение изгибной волны в пластине, толщина которой плавно уменьшается до нуля на конечном интервале // Акуст. журн. 1988. Т. 34. № 3. С. 546–547.
  2. Pelat A., Gautier F., Conlon S.C., Semperlotti F. The acoustic black hole: A review of theory and applications // J. Sound Vibr. 2020. V. 476.115316 https://doi.org/10.1016/j.jsv.2020.115316
  3. Pisliakov V., Mironov M., Svadkovsky A. Vibration of specially tapered beams and plates // Internoise–2000. Nice. France. Proceedings 4-2657.
  4. Krylov V.V. Propagation of plate bending waves in the vicinity of one- and two-dimensional acoustic ‘black holes’ // Proc. of the ECCOMAS Int. Conf. on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2007). Rethymno, Crete, Greece, 13-16 June 2007 (CD-ROM).
  5. Bowyer E.P., O’Boy D.J., Krylov V.V., Gautier F. Experimental investigation of damping flexural vibrations using two-dimensional acoustic ‘black holes’ // Proc. of the Int. Conf. on Noise and Vibration Engineering (ISMA 2010). Leuven, Belgium, 20–22 September 2010. Ed. Sas P., Bergen B. 2010. P. 1181–1192.
  6. Zhou T., Tang L., Ji H., Qiu J., and Cheng L. Dynamic and static properties of double-layered compound acoustic black hole structures // Int. J. Applied Mechanics. 2017. V. 9(5). 1750074.
  7. Lee J.Y., Jeon W. Vibration damping using a spiral acoustic black hole // J. Acoust. Soc. Am. 2017. V. 141. № 5. P. 1437–1445.
  8. Wan Z., Zhu X., Li T., Nie R. Low-frequency multimode vibration suppression of an acoustic black hole beam by shunt damping // J. Vib. Acoust. 2022. 144. 2. 021012. https://doi.org/10.1115/1.4053590
  9. Hook K., Daley S., Cheer J. Active control of an acoustic black hole using a feedback strategy // J. Sound Vibr. 2022. 528. 116895. https://doi.org/10.1016/j.jsv.2022.116895
  10. Миронов М.А. Разрезной стержень как вибрационная черная дыра // Акуст. журн. 2019. Т. 65. № 6. С. 736–739.
  11. Deng J., Guasch O., Maxit L., Gao N. A metamaterial consisting of an acoustic black hole plate with local resonators for broadband vibration reduction // J. Sound Vibr. 2022. V. 526. 16803. https://doi.org/10.1016/j.jsv.2022.116803
  12. Raybaud G., Lee J. Y., Jeon W., Pelat A., Gautier F. On the control of the absorption of an Acoustic Black Hole by using attached point supports // J. Sound Vibr. 2023. V. 548. № 3. 117562. https://doi.org/10.1016/j.jsv.2023.117562
  13. Zheng E., He S., Tang R., and He S. Damping Enhancement Using Axially Functionally Graded Porous Structure Based on Acoustic Black Hole Effect // Materials 2019. V. 12. P. 2480. https://doi.org/10.3390/ma12152480
  14. Austin B., Cheer J., Bastola A. Design of a multi-material acoustic black hole. Inter Noise 2022. Glasgow, UK. August 2022.
  15. Tong Zhou, Li Cheng. Planar Swirl-shaped Acoustic Black Hole Absorbers for Multi-directional Vibration Suppression // J. Sound Vibr. 2022. V. 516(3). 116500. https://doi.org/10.1016/j.jsv.2021.116500
  16. Kim S.-Y., Lee D. Numerical simulation of characteristics of wave propagation and reflection coefficient in a helix-acoustic black hole // J. Vibr. Control. 2020. V. 28. № 5–6. https://doi.org/10.1177/1077546320980570
  17. Kim S.-Y., Lee D. Experimental investigation of a modular helix-acoustic black hole // Applied Acoustics 2023. V. 214. 109661. https://doi.org/10.1016/j.apacoust.2023.109661
  18. Sørensen K.S., Cornean H.D., and Sorokin S. Optimal profile design for acoustic black holes using Timoshenko beam theory // J. Acoust. Soc. Am. 2023. V. 153. № 3. P. 1554–1563. https://doi.org/10.1121/10.0017322
  19. Стретт Дж. В. (Рэлей). Теория звука. М.: Гостехиздат, 1955. Т. 1. Гл. 7, раздел 148в. С. 251–253. 476 с.
  20. Ландау Л.Д., Лившиц Е.М. Теория упругости. М.: Физматлит, 2001. 259 с.
  21. Миронов М.А. Точные решения уравнения поперечных колебаний стержня со специальным законом изменения поперечного сечения // Акуст. журн. 2017. Т. 63. № 1. С. 3–8.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Elliptical cross-section rod with decreasing thickness — vibrational frequency resonance for torsional waves. The x-coordinate is measured from the thin cross-section of the rod.

Жүктеу (77KB)
3. Fig. 2. Input impedance of the frequency resonance, δ = 0.01. The abscissa axis is the normalized frequency. The ordinate axis is the modulus of the frequency resonance impedance normalized to the input impedance of a homogeneous rod. 1 (dotted line) — homogeneous rod, 2 (solid) — ε = 0.1, 3 (dashed) — ε = 0.01.

Жүктеу (113KB)
4. Fig. 3. Input impedance of the frequency resonance, δ = 0.1. Designations as in Fig. 2.

Жүктеу (106KB)
5. Fig. 4. Ratio of imaginary parts of impedances of an ideal frequency resonance and a semi-infinite homogeneous rod as a function of frequency.

Жүктеу (37KB)
6. Fig. 5. 1 — ratio of axes as a function of distance to the final section of a rod of elliptical section; 2 — asymptotics as X → 0.

Жүктеу (63KB)
7. Fig. 6. Dependences of the thickness of the rod b(X) for a power-law dependence of its width a(X). m = 0, 0.25, 0.5, 1.0 (from top to bottom).

Жүктеу (68KB)

© The Russian Academy of Sciences, 2025