The Mechanism of Mycobacterial (p)ppGpp Synthetase Inhibition by Synthetic Erogorgiaene Analog

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The synthesis of (p)ppGpp alarmones plays a vital role in the regulation of metabolism cessation, growth rate control, virulence, bacterial persistence, and biofilm formation. The RelA/SpoT homologs superfamily proteins are responsible for (p)ppGpp alarmone synthesis, including long bifunctional RSH proteins and small alarmone synthetases. This study employs enzyme kinetics and dose-dependent inhibition methods to investigate the specific mechanism of action of DMNP involving RelMsm and RelZ proteins, which are (p)ppGpp synthetases in Mycolicibacterium smegmatis belonging to both types, as well as RelMtb protein from Mycobacterium tuberculosis. The compound DMNP has demonstrated its capability to inhibit the activity of the RelMtb protein. According to enzyme kinetics analysis, DMNP acts as a noncompetitive inhibitor targeting the RelMsm and RelZ proteins. Molecular docking analysis allowed to localize the DMNP binding site in proximity to the (p)ppGpp synthetase domain active site. This study advances the development of alarmone synthetase inhibitor class of compounds, which includes relacin and its derivatives, alongside the investigated compound DMNP – a synthetic analog of the marine coral metabolite erogorgiaene. Unlike the conventional antibiotics, alarmone synthetase inhibitors target metabolic pathways linked to the stringent response. Although these pathways are not essential for bacteria, they regulate the development of adaptation mechanisms. Combining the conventional antibiotics that target actively growing cells with compounds that impede bacterial adaptation may potentially address prevailing challenges associated with antimicrobial resistance and bacterial persistence.

Full Text

Restricted Access

About the authors

R. Yu. Sidorov

Perm Federal Research Center, the Ural Branch of Russian Academy of Sciences; Perm State University

Author for correspondence.
Email: sidorov.r@iegm.ru
Russian Federation, Perm; Perm

A. G. Tkachenko

Perm Federal Research Center, the Ural Branch of Russian Academy of Sciences; Perm State University

Email: sidorov.r@iegm.ru
Russian Federation, Perm; Perm

References

  1. Brauner, A., Fridman, O., Gefen, O., and Balaban, N. Q. (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment, Nat. Rev. Microbiol., 14, 320-330, https://doi.org/10.1038/nrmicro.2016.34.
  2. Shao, Y., Song, H., Li, G., Li, Y., Li, Y., Zhu, L., Lu, W., and Chen, C. (2021) Relapse or re-infection, the situation of recurrent tuberculosis in Eastern China, Front. Cell. Infect., 11, 638990, https://doi.org/10.3389/fcimb.2021.638990.
  3. Rosser, A., Marx, F. M., and Pareek, M. (2018) Recurrent tuberculosis in the pre-elimination era, Int. J. Tuberc. Lung Dis., 22, 139-150, https://doi.org/10.5588/ijtld.17.0590.
  4. Mandal, S., Njikan, S., Kumar, A., Early, J. V., and Parish, T. (2019) The relevance of persisters in tuberculosis drug discovery, Microbiology (Reading), 165, 492-499, https://doi.org/10.1099/mic.0.000760.
  5. Grace, A. G., Mittal, A., Jain, S., Tripathy, J. P., Satyanarayana, S., Tharyan, P., and Kirubakaran, R. (2019) Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis, Cochrane Database Syst. Rev., 12, CD012918, https://doi.org/10.1002/14651858.CD012918.pub2.
  6. Niño-Padilla, E. I., Velazquez, C., and Garibay-Escobar, A. (2021) Mycobacterial biofilms as players in human infections: a review, Biofouling, 37, 410-432, https://doi.org/10.1080/08927014.2021.1925886.
  7. Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., McKay, G., Siehnel, R., Schafhauser, J., Wang, Y., Britigan, B. E., and Singh, P. K. (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria, Science, 334, 982-986, https://doi.org/10.1126/science.1211037.
  8. Gupta, K. R., Arora, G., Mattoo, A., and Sajid, A. (2021) Stringent response in Mycobacteria: from biology to therapeutic potential, Pathogens (Basel, Switzerland), 10, 1417, https://doi.org/10.3390/pathogens10111417.
  9. Hobbs, J. K., and Boraston, A. B. (2019) (p)ppGpp and the stringent response: an emerging threat to antibiotic therapy, ACS Infect. Dis., 5, 1505-1517, https://doi.org/10.1021/acsinfecdis.9b00204.
  10. Dutta, N. K., Klinkenberg, L. G., Vazquez, M. J., Segura-Carro, D., Colmenarejo, G., Ramon, F., Rodriguez-Miquel, B., Mata-Cantero, L., Porras-De Francisco, E., Chuang, Y.-M., Rubin, H., Lee, J. J., Eoh, H., Bader, J. S., Perez-Herran, E., Mendoza-Losana, A., and Karakousis, P. C. (2019) Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence, Sci. Adv., 5, eaav2104, https://doi.org/10.1126/sciadv.aav2104.
  11. Weiss, L. A., and Stallings, C. L. (2013) Essential roles for Mycobacterium tuberculosis Rel beyond the production of (p)ppGpp, J. Bacteriol., 195, 5629-5638, https://doi.org/10.1128/JB.00759-13.
  12. Atkinson, G. C., Tenson, T., and Hauryliuk, V. (2011) The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life, PLoS One, 6, e23479, https://doi.org/10.1371/journal.pone.0023479.
  13. Wexselblatt, E., Oppenheimer-Shaanan, Y., Kaspy, I., London, N., Schueler-Furman, O., Yavin, E., Glaser, G., Katzhendler, J., and Ben-Yehuda, S. (2012) Relacin, a novel antibacterial agent targeting the stringent response, PLoS Pathog., 8, e1002925, https://doi.org/10.1371/journal.ppat.1002925.
  14. Wexselblatt, E., Kaspy, I., Glaser, G., Katzhendler, J., and Yavin, E. (2013) Design, synthesis and structure-activity relationship of novel Relacin analogs as inhibitors of Rel proteins, Eur. J. Med. Chem., 70, 497-504, https:// doi.org/10.1016/j.ejmech.2013.10.036.
  15. Syal, K., Flentie, K., Bhardwaj, N., Maiti, K., Jayaraman, N., Stallings, C. L., and Chatterji, D. (2017) Synthetic (p)ppGpp analogue is an inhibitor of stringent response in mycobacteria, Antimicrob. Agents Chemother., 61, e00443-17, https://doi.org/10.1128/AAC.00443-17.
  16. Beljantseva, J., Kudrin, P., Jimmy, S., Ehn, M., Pohl, R., Varik, V., Tozawa, Y., Shingler, V., Tenson, T., Rejman, D., and Hauryliuk, V. (2017) Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor, Sci. Rep., 7, 41839, https://doi.org/10.1038/srep41839.
  17. Syal, K., Bhardwaj, N., and Chatterji, D. (2017) Vitamin C targets (p)ppGpp synthesis leading to stalling of long-term survival and biofilm formation in Mycobacterium smegmatis, FEMS Microbiol. Lett., 364, fnw282, https:// doi.org/10.1093/femsle/fnw282.
  18. Tkachenko, A. G., Kashevarova, N. M., Sidorov, R. Y., Nesterova, L. Y., Akhova, A. V., Tsyganov, I. V., Vaganov, V. Yu., Shipilovskikh, S. A., Rubtsov, A. E., and Malkov, A. V. (2021) A synthetic diterpene analogue inhibits mycobacterial persistence and biofilm formation by targeting (p)ppGpp synthetases, Cell Chem. Biol., 28, 1420-1432.e9, https:// doi.org/10.1016/j.chembiol.2021.01.018.
  19. Sidorov, R. Yu., and Tkachenko, A. G. (2023) DMNP, a synthetic analog of erogorgiaene, inhibits the ppGpp synthetase activity of the small alarmone synthetase RelZ, BIO Web Conf., 57, 08002, https://doi.org/10.1051/ bioconf/20235708002.
  20. Danchik, C., Wang, S., and Karakousis, P. C. (2021) Targeting the Mycobacterium tuberculosis stringent response as a strategy for shortening tuberculosis treatment, Front. Microbiol., 12, 744167, https://doi.org/10.3389/fmicb.2021.744167.
  21. Jain, V., Saleem-Batcha, R., China, A., and Chatterji, D. (2006) Molecular dissection of the mycobacterial stringent response protein Rel, Protein Sci., 15, 1449-1464, https://doi.org/10.1110/ps.062117006.
  22. Murdeshwar, M. S., and Chatterji, D. (2012) MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis, J. Bacteriol., 194, 4003-4014, https://doi.org/10.1128/JB.00258-12.
  23. Singal, B., Balakrishna, A. M., Nartey, W., Manimekalai, M. S. S., Jeyakanthan, J., and Grüber, G. (2017) Crystallographic and solution structure of the N-terminal domain of the Rel protein from Mycobacterium tuberculosis, FEBS Lett., 591, 2323-2337, https://doi.org/10.1002/1873-3468.12739.
  24. Akhova, A. V., and Tkachenko, A. G. (2019) HPLC-UV method for simultaneous determination of adenosine triphosphate and its metabolites in Mycobacterium smegmatis, Acta Chromatogr., 31, 45-48, https:// doi.org/10.1556/1326.2017.00344.
  25. Petchiappan, A., Naik, S. Y., and Chatterji, D. (2020) RelZ-mediated stress response in Mycobacterium smegmatis: pGpp synthesis and its regulation, J. Bacteriol., 202, e00444-19, https://doi.org/10.1128/JB.00444-19.
  26. Bag, S., Das, B., Dasgupta, S., and Bhadra, R. K. (2014) Mutational analysis of the (p)ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis, Arch. Microbiol., 196, 575-588, https://doi.org/10.1007/s00203-014-0996-9.
  27. Pedersen, F. S., and Kjeldgaard, N. O. (1977) Analysis of the relA gene product of Escherichia coli, Eur. J. Biochem., 76, 91-97, https://doi.org/10.1111/j.1432-1033.1977.tb11573.x.
  28. Wong, F., Krishnan, A., Zheng, E. J., Stärk, H., Manson, A. L., Earl, A. M., Jaakkola, T., and Collins, J. J. (2022) Benchmarking AlphaFold-enabled molecular docking predictions for antibiotic discovery, Mol. Syst. Biol., 18, e11081, https://doi.org/10.15252/msb.202211081.
  29. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., Figurnov, M., Cowie, A., Hobbs, N., Kohli, P., Kleywegt, G., Birney, E., Hassabis, D., and Velankar, S. (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models, Nucleic Acids Res., 50, D439-D444, https://doi.org/10.1093/nar/gkab1061.
  30. Steinchen, W., and Bange, G. (2016) The magic dance of the alarmones (p)ppGpp, Mol. Microbiol., 101, 531-544, https://doi.org/10.1111/mmi.13412.
  31. Sánchez-Linares, I., Pérez-Sánchez, H., Cecilia, J. M., and García, J. M. (2012) High-throughput parallel blind virtual screening using BINDSURF, BMC Bioinformatics, 13, S13, https://doi.org/10.1186/1471-2105-13-S14-S13.
  32. Nanamiya, H., Kasai, K., Nozawa, A., Yun, C. S., Narisawa, T., Murakami, K., Natori, Y., Kawamura, F., and Tozawa, Y. (2008) Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis, Mol. Microbiol., 67, 291-304, https://doi.org/10.1111/j.1365-2958.2007.06018.x.
  33. Salzer, A., Keinhörster, D., Kästle, C., Kästle, B., and Wolz, C. (2020) Small alarmone synthetases RelP and RelQ of Staphylococcus aureus are involved in biofilm formation and maintenance under cell wall stress conditions, Front. Microbiol., 11, 575882, https://doi.org/10.3389/fmicb.2020.575882.
  34. Dasgupta, S., Basu, P., Pal, R. R., Bag, S., and Bhadra, R. K. (2014) Genetic and mutational characterization of the small alarmone synthetase gene relV of Vibrio cholerae, Microbiology (Reading), 160, 1855-1866, https://doi.org/ 10.1099/mic.0.079319-0.
  35. Gaca, A. O., Kudrin, P., Colomer-Winter, C., Beljantseva, J., Liu, K., Anderson, B., Wang, J. D., Rejman, D., Potrykus, K., Cashel, M., Hauryliuk, V., and Lemos, J. A. (2015) From (p)ppGpp to (pp)pGpp: characterization of regulatory effects of pGpp synthesized by the small alarmone synthetase of Enterococcus faecalis, J. Bacteriol., 197, 2908-2919, https://doi.org/10.1128/JB.00324-15.
  36. Syal, K., Joshi, H., Chatterji, D., and Jain, V. (2015) Novel pppGpp binding site at the C-terminal region of the Rel enzyme from Mycobacterium smegmatis, FEBS J., 282, 3773-3785, https://doi.org/10.1111/febs.13373.
  37. Roghanian, M., Van Nerom, K., Takada, H., Caballero-Montes, J., Tamman, H., Kudrin, P., Talavera, A., Dzhygyr, I., Ekström, S., Atkinson, G. C., Garcia-Pino, A., and Hauryliuk, V. (2021) (p)ppGpp controls stringent factors by exploiting antagonistic allosteric coupling between catalytic domains, Mol. Cell, 81, 3310-3322.e6, https://doi.org/ 10.1016/j.molcel.2021.07.026.
  38. Krishnan, S., Petchiappan, A., Singh, A., Bhatt, A., and Chatterji, D. (2016) R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence, Mol. Microbiol., 102, 168-182, https://doi.org/10.1111/mmi.13453.
  39. Yang, N., Xie, S., Tang, N. Y., Choi, M. Y., Wang, Y., and Watt, R. M. (2019) The Ps and Qs of alarmone synthesis in Staphylococcus aureus, PLoS One, 14, e0213630, https://doi.org/10.1371/journal.pone.0213630.
  40. Steinchen, W., Schuhmacher, J. S., Altegoer, F., Fage, C. D., Srinivasan, V., Linne, U., Marahiel, M. A., and Bange, G. (2015) Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone, Proc. Natl. Acad. Sci. USA, 112, 13348-13353, https://doi.org/10.1073/pnas.1505271112.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Domain composition of RSH superfamily enzymes catalysing the synthesis and hydrolysis of alarmones (p)ppGpp. Bifunctional long RSHs, such as RelMsm from M. smegmatis and RelMtb from M. tuberculosis, include hydrolase (HYD) and synthetase (SYN) domains in the catalytic domain, as well as a C-terminal regulatory domain (REG). Monofunctional short RSHs contain either a hydrolase or synthetase domain. RelZ from M. smegmatis is an unusual small alarmonsynthetase because it also contains an HII RNase (HII) domain

Download (107KB)
3. Fig. 2. Effect of DMNP inhibitor on the enzymatic kinetics of (p)ppGpp-synthetases of M. smegmatis. a - Chromatographic analysis of nucleotides in samples taken from the enzymatic reaction with RelNTD after: 1 - 0 h or 2 - 0.5 h (detection at 254 nM, 1 mM GTP, 4 mM ATP). b - Analysis of the enzymatic kinetics of the N-terminal domain of the RelMsm protein from M. smegmatis. The curves of reaction rate dependence (calculated per 1 μmol of protein) on the concentration of substrate GTP are given: 1 - in the absence of inhibitor addition; 2 - when 600 μM DMNP was added. c - Ds-Na-PAAG electrophoresis of purified RelNTD enzyme. d - Chromatographic analysis of nucleotides in samples taken from the enzymatic reaction with RelZ after 1 - 0 h or 2 - 0.5 h (detection at 254 nM, 1 mM GDP, 4 mM ATP). e - Enzymatic kinetics analysis of the small RelZ alarmonsynthetase from M. smegmatis. The curves of reaction rate dependence (calculated per 1 μmol of protein) on the substrate concentration GDP are shown: 1 - in the absence of inhibitor addition; 2 - when 600 μM DMNP was added. f - Ds-Na-PAAG electrophoresis of purified RelZ enzyme. g - Hill plot for the reaction with RelZ: 1 - in the absence of inhibitor addition; 2 - when 600 μM DMNP was added

Download (384KB)
4. Fig. 3. pppGpp-Synthesising activity of the long RSH protein RelMtb from M. tuberculosis over a range of DMNP concentrations (0-600 μM) in 5% methanol. The reaction rate is estimated by the change in the concentration of the substrate GTP. MetOH- - reaction without methanol and DMNP addition

Download (94KB)
5. Fig. 4. Spatial alignment and molecular docking results of three-dimensional structures of M. tuberculosis RelMtb (blue), M. smegmatis RelMsm (purple) and RelZ (yellow) target proteins predicted by AlphaFold. SYN, synthetase domain; HYD, hydrolase domain; CTD, regulatory C-terminal domain; TGS, TGS domain; HII, HII RNase domain. DMNP binding clusters (green): 1 - corresponding to the active site of the synthetase domain, 2 - located near the active site of the synthetase domain

Download (756KB)

Copyright (c) 2024 Russian Academy of Sciences