Combined Administration of Metformin and Amprolium to Rats Affects Metabolism of Free Amino Acids in the Brain, Altering Behavior, and Heart Rate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The risk of developing diabetes and cardiometabolic disorders is associated with increased levels of alpha-aminoadipic acid and disturbances in the metabolism of branched-chain amino acids. The side effects of the widely used antidiabetic drug metformin include impaired degradation of branched-chain amino acids and inhibition of intracellular thiamin transport. These effects may be interconnected, as thiamine deficiency impairs the functioning of thiamine diphosphate (ThDP)-dependent dehydrogenases of 2-oxo acids involved in amino acids degradation, while diabetes is often associated with perturbed thiamine status. In this work, we investigate the action of metformin in rats with impaired thiamine availability. The reduction in the thiamine influx is induced by simultaneous administration of the thiamine transporters inhibitors metformin and amprolium. After 24 days of combined metformin/amprolium administration, no significant changes in the total brain levels of ThDP or activities of ThDP-dependent enzymes of central metabolism are observed, but the affinities of transketolase and 2-oxoglutarate dehydrogenase to ThDP increase. The treatment also significantly elevates the brain levels of free amino acids and ammonia, reduces the antioxidant defense, and alters the sympathetic/parasympathetic regulation, which is evident from changes in the ECG and behavioral parameters. Strong positive correlations between brain ThDP levels and contents of ammonia, glutathione disulfide, alpha-aminoadipate, glycine, citrulline, and ethanolamine are observed in the metformin/amprolium-treated rats, but not in the control animals. Analysis of the obtained data points to a switch in the metabolic impact of ThDP from the antioxidant and nitrogen-sparing in the control rats to the pro-oxidant and hyperammonemic in the metformin/amprolium-treated rats. As a result, metformin administration along with the amprolium-reduced thiamine supply significantly perturb the metabolism of amino acids in the rat brain, altering behavioral and ECG parameters.

Full Text

Restricted Access

About the authors

A. V. Graf

Lomonosov Moscow State University

Email: bunik@belozersky.msu.ru
Russian Federation, 119234, Moscow

A. V. Artiukhov

Lomonosov Moscow State University; Sechenov Medical University

Email: bunik@belozersky.msu.ru
Russian Federation, 119234, Moscow; 105043, Moscow

O. N. Solovyeva

Lomonosov Moscow State University

Email: bunik@belozersky.msu.ru
Russian Federation, 119234, Moscow

A. L. Ksenofontov

Lomonosov Moscow State University

Email: bunik@belozersky.msu.ru
Russian Federation, 119234, Moscow

V. I. Bunik

Lomonosov Moscow State University; Sechenov Medical University

Author for correspondence.
Email: bunik@belozersky.msu.ru
Russian Federation, 119234, Moscow; 105043, Moscow

References

  1. White, P. J., McGarrah, R. W., Herman, M. A., Bain, J. R., Shah, S. H., and Newgard, C. B. (2021) Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street, Mol. Metab., 52, 101261, https://doi.org/10.1016/ j.molmet.2021.101261.
  2. Tobias, D. K., Mora, S., Verma, S., and Lawler, P. R. (2018) Altered branched chain amino acid metabolism: toward a unifying cardiometabolic hypothesis, Curr. Opin. Cardiol., 33, 558-564, https://doi.org/10.1097/HCO.0000000000000552.
  3. Desine, S., Gabriel, C. L., Smith, H. M., Antonetti, O. R., Wang, C., Calcutt, M. W., Doran, A. C., Silver, H. J., Nair, S., Terry, J. G., Carr, J. J., Linton, M. F., Brown, J. D., Koethe, J. R., and Ferguson, J. F. (2023) Association of alpha-aminoadipic acid with cardiometabolic risk factors in healthy and high-risk individuals, Front. Endocrinol. (Lausanne), 14, 1122391, https://doi.org/10.3389/fendo.2023.1122391.
  4. Zhao, X., Zhang, X., Pei, J., Liu, Y., Niu, W., and Sun, H. (2023) Targeting BCAA metabolism to potentiate metformin’s therapeutic efficacy in the treatment of diabetes in mice, Diabetologia, 66, 2139-2153, https:// doi.org/10.1007/s00125-023-05985-6.
  5. Rivera, C. N., Watne, R. M., Brown, Z. A., Mitchell, S. A., Wommack, A. J., and Vaughan, R. A. (2023) Effect of AMPK activation and glucose availability on myotube LAT1 expression and BCAA utilization, Amino Acids, 55, 275-286, https://doi.org/10.1007/s00726-022-03224-7.
  6. Navarro, D., Zwingmann, C., and Butterworth, R. F. (2008) Impaired oxidation of branched-chain amino acids in the medial thalamus of thiamine-deficient rats, Metab. Brain Dis., 23, 445-455, https://doi.org/10.1007/ s11011-008-9105-6.
  7. Navarro, D., Zwingmann, C., and Butterworth, R. F. (2008) Region-selective alterations of glucose oxidation and amino acid synthesis in the thiamine-deficient rat brain: a re-evaluation using 1H/13C nuclear magnetic resonance spectroscopy, J. Neurochem., 106, 603-612, https://doi.org/10.1111/j.1471-4159.2008.05410.x.
  8. Tsepkova, P. M., Artiukhov, A. V., Boyko, A. I., Aleshin, V. A., Mkrtchyan, G. V., Zvyagintseva, M. A., Ryabov, S. I., Ksenofontov, A. L., Baratova, L. A., Graf, A. V., and Bunik, V. I. (2017) Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain, Biochemistry (Moscow), 82, 723-736, https://doi.org/10.1134/S0006297917060098.
  9. Bunik, V. I. (2023) Editorial: Experts’ opinion in medicine 2022, Front. Med. (Lausanne), 10, 1296196, https:// doi.org/10.3389/fmed.2023.1296196.
  10. Muley, A., Fernandez, R., Green, H., and Muley, P. (2022) Effect of thiamine supplementation on glycaemic outcomes in adults with type 2 diabetes: a systematic review and meta-analysis, BMJ Open, 12, e059834, https://doi.org/10.1136/bmjopen-2021-059834.
  11. Tamaki, H., Tsushima, H., Kachi, N., and Jimura, F. (2022) Cardiac dysfunction due to thiamine deficiency after hemodialysis for biguanide-related lactic acidosis, Intern. Med., 61, 2905-2909, https://doi.org/10.2169/ internalmedicine.8697-21.
  12. Alston, T. A. (2003) Does metformin interfere with thiamine? Arch. Intern. Med., 163, 983; author reply 983, https://doi.org/10.1001/archinte.163.8.983.
  13. Greenwood, J., and Pratt, O. E. (1985) Comparison of the effects of some thiamine analogues upon thiamine transport across the blood-brain barrier of the rat, J. Physiol., 369, 79-91, https://doi.org/10.1113/jphysiol. 1985.sp015889.
  14. Dudeja, P. K., Tyagi, S., Kavilaveettil, R. J., Gill, R., and Said, H. M. (2001) Mechanism of thiamine uptake by human jejunal brush-border membrane vesicles, Am. J. Physiol. Cell Physiol., 281, C786-792, https://doi.org/10.1152/ajpcell.2001.281.3.C786.
  15. Bizon-Zygmanska, D., Jankowska-Kulawy, A., Bielarczyk, H., Pawelczyk, T., Ronowska, A., Marszall, M., and Szutowicz, A. (2011) Acetyl-CoA metabolism in amprolium-evoked thiamine pyrophosphate deficits in cholinergic SN56 neuroblastoma cells, Neurochem. Int., 59, 208-216, https://doi.org/10.1016/j.neuint.2011.04.018.
  16. Bunik, V. I., Tylicki, A., and Lukashev, N. V. (2013) Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models, FEBS J., 280, 6412-6442, https://doi.org/10.1111/ febs.12512.
  17. Wernery, U., Haydn-Evans, J., and Kinne, J. (1998) Amprolium-induced cerebrocortical necrosis (CCN) in dromedary racing camels, Zentralbl. Veterinarmed. B, 45, 335-343, https://doi.org/10.1111/j.1439-0450.1998.tb00802.x.
  18. Kasahara, T., Ichijo, S., Osame, S., and Sarashina, T. (1989) Clinical and biochemical findings in bovine cerebrocortical necrosis produced by oral administration of amprolium, Nihon Juigaku Zasshi, 51, 79-85, https:// doi.org/10.1292/jvms1939.51.79.
  19. Frye, T. M., Williams, S. N., and Graham, T. W. (1991) Vitamin deficiencies in cattle, Vet. Clin. North Am. Food Anim. Pract., 7, 217-275, https://doi.org/10.1016/s0749-0720(15)30817-3.
  20. Tanwar, R. K., Malik, K. S., and Gahlot, A. K. (1994) Polioencephalomalacia induced with amprolium in buffalo calves--clinicopathologic findings, Zentralbl. Veterinarmed. A, 41, 396-404, https://doi.org/10.1111/j.1439-0442. 1994.tb00106.x.
  21. Nikov, S., Ivanov, I. T., Simeonov, S. P., Stoikov, D., and Iordanova, V. (1983) Cerebrocortical necrosis in calves, sheep and goats, Vet. Med. Nauki, 20, 58-67.
  22. Thornber, E. J., Elliott, L. E., Kerr, D., Marriott, J. M., and Massera, F. C. (1983) Thiamin inadequacy in infants: lack of evidence of amprolium in egg yolk, Aust. N. Z. J. Med., 13, 51-52, https://doi.org/10.1111/j.1445-5994. 1983.tb04549.x.
  23. Moraes, J. O., Rodrigues, S. D. C., Pereira, L. M., Medeiros, R. C. N., de Cordova, C. A. S., and de Cordova, F. M. (2018) Amprolium exposure alters mice behavior and metabolism in vivo, Animal Model Exp. Med., 1, 272-281, https://doi.org/10.1002/ame2.12040.
  24. Lemos, C., Faria, A., Meireles, M., Martel, F., Monteiro, R., and Calhau, C. (2012) Thiamine is a substrate of organic cation transporters in Caco-2 cells, Eur. J. Pharmacol., 682, 37-42, https://doi.org/10.1016/j.ejphar.2012.02.028.
  25. Aleshin, V. A., Mkrtchyan, G. V., and Bunik, V. I. (2019) Mechanisms of non-coenzyme action of thiamine: protein targets and medical significance, Biochemistry (Moscow), 84, 829-850, https://doi.org/10.1134/S0006297919080017.
  26. Liang, X., Chien, H. C., Yee, S. W., Giacomini, M. M., Chen, E. C., Piao, M., Hao, J., Twelves, J., Lepist, E. I., Ray, A. S., and Giacomini, K. M. (2015) Metformin is a substrate and inhibitor of the human thiamine transporter, THTR-2 (SLC19A3), Mol. Pharm., 12, 4301-4310, https://doi.org/10.1021/acs.molpharmaceut.5b00501.
  27. Oliveira, W. H., Nunes, A. K., Franca, M. E., Santos, L. A., Los, D. B., Rocha, S. W., Barbosa, K. P., Rodrigues, G. B., and Peixoto, C. A. (2016) Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice, Brain Res., 1644, 149-160, https://doi.org/10.1016/j.brainres.2016.05.013.
  28. Gould, T. D., Dao, D. T., and Kovacsics, C. E. (2009) The Open Field Test, in Mood and Anxiety Related Phenotypes in Mice (Gould, T. D., ed.) Humana Press/Springer Nature, pp. 1-20, https://doi.org/10.1007/978-1-60761-303-9_1.
  29. Aleshin, V. A., Graf, A. V., Artiukhov, A. V., Boyko, A. I., Ksenofontov, A. L., Maslova, M. V., Nogues, I., di Salvo, M. L., and Bunik, V. I. (2021) Physiological and biochemical markers of the sex-specific sensitivity to epileptogenic factors, delayed consequences of seizures and their response to vitamins B1 and B6 in a rat model, Pharmaceuticals (Basel), 14, 737, https://doi.org/10.3390/ph14080737.
  30. Graf, A. V., Maslova, M. V., Artiukhov, A. V., Ksenofontov, A. L., Aleshin, V. A., and Bunik, V. I. (2022) Acute prenatal hypoxia in rats affects physiology and brain metabolism in the offspring, dependent on sex and gestational age, Int. J. Mol. Sci., 23, 2579, https://doi.org/10.3390/ijms23052579.
  31. De La Haba, G., Leder, I. G., and Racker, E. (1955) Crystalline transketolase from bakers’ yeast: isolation and properties, J. Biol. Chem., 214, 409-426.
  32. Aleshin, V. A., Kaehne, T., Maslova, M. V., Graf, A. V., and Bunik, V. I. (2024) Posttranslational acylations of the rat brain transketolase discriminate the enzyme responses to inhibitors of ThDP-dependent enzymes or thiamine transport, Int. J. Mol. Sci., 25, 917, https://doi.org/10.3390/ijms25020917.
  33. Hinman, L. M., and Blass, J. P. (1981) An NADH-linked spectrophotometric assay for pyruvate dehydrogenase complex in crude tissue homogenates, J. Biol. Chem., 256, 6583-6586.
  34. Schwab, M. A., Kolker, S., van den Heuvel, L. P., Sauer, S., Wolf, N. I., Rating, D., Hoffmann, G. F., Smeitink, J. A., and Okun, J. G. (2005) Optimized spectrophotometric assay for the completely activated pyruvate dehydrogenase complex in fibroblasts, Clin. Chem., 51, 151-160, https://doi.org/10.1373/clinchem.2004.033852.
  35. Artiukhov, A. V., Graf, A. V., Kazantsev, A. V., Boyko, A. I., Aleshin, V. A., Ksenofontov, A. L., and Bunik, V. I. (2022) Increasing inhibition of the rat brain 2-oxoglutarate dehydrogenase decreases glutathione redox state, elevating anxiety and perturbing stress adaptation, Pharmaceuticals (Basel), 15, 182, https://doi.org/10.3390/ph15020182.
  36. Ksenofontov, A. L., Boyko, A. I., Mkrtchyan, G. V., Tashlitsky, V. N., Timofeeva, A. V., Graf, A. V., Bunik, V. I., and Baratova, L. A. (2017) Analysis of free amino acids in mammalian brain extracts, Biochemistry (Moscow), 82, 1183-1192, https://doi.org/10.1134/S000629791710011X.
  37. Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I., and Hamberger, A. V. (1985) Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments, J. Cereb. Blood Flow Metab., 5, 413-319, https://doi.org/10.1038/jcbfm.1985.56.
  38. Ellison, D. W., Beal, M. F., and Martin, J. B. (1987) Phosphoethanolamine and ethanolamine are decreased in Alzheimer’s disease and Huntington’s disease, Brain Res., 417, 389-392, https://doi.org/10.1016/0006-8993(87)90471-9.
  39. Suarez, L. M., Munoz, M. D., Martin Del Rio, R. and Solis, J. M. (2016) Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity, Amino Acids, 48, 1199-1208, https://doi.org/10.1007/s00726-015-2155-2.
  40. Turner, O., Phoenix, J., and Wray, S. (1994) Developmental and gestational changes of phosphoethanolamine and taurine in rat brain, striated and smooth muscle, Exp. Physiol., 79, 681-689, https://doi.org/10.1113/ expphysiol.1994.sp003800.
  41. Artiukhov, A. V., Aleshin, V. A., Karlina, I. S., Kazantsev, A. V., Sibiryakina, D. A., Ksenofontov, A. L., Lukashev, N. V., Graf, A. V., and Bunik, V. I. (2022) Phosphonate inhibitors of pyruvate dehydrogenase perturb homeostasis of amino acids and protein succinylation in the brain, Int. J. Mol. Sci., 23, 13186, https://doi.org/10.3390/ijms232113186.
  42. Artiukhov, A. V., Pometun, A. A., Zubanova, S. A., Tishkov, V. I., and Bunik, V. I. (2020) Advantages of formate dehydrogenase reaction for efficient NAD(+) quantification in biological samples, Anal. Biochem., 603, 113797, https://doi.org/10.1016/j.ab.2020.113797.
  43. Kochetov, G. A. (1982) Transketolase from yeast, rat liver, and pig liver, Methods Enzymol., 90 Pt E, 209-223, https://doi.org/10.1016/s0076-6879(82)90128-8.
  44. Artiukhov, A. V., Solovjeva, O. N., Balashova, N. V., Sidorova, O. P., Graf, A. V., and Bunik, V. I. (2024) Pharmacological doses of thiamine benefit patients with the Charcot–Marie–Tooth neuropathy by changing thiamine diphosphate levels and affecting regulation of thiamine-dependent enzymes, Biochemistry (Moscow), 89, 1-22, https://doi.org/10.1134/S0006297924070010.
  45. Huang, H. M., Chen, H. L., and Gibson, G. E. (2010) Thiamine and oxidants interact to modify cellular calcium stores, Neurochem. Res., 35, 2107-2116, https://doi.org/10.1007/s11064-010-0242-z.
  46. Karuppagounder, S. S., Xu, H., Shi, Q., Chen, L. H., Pedrini, S., Pechman, D., Baker, H., Beal, M. F., Gandy, S. E., and Gibson, G. E. (2009) Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model, Neurobiol. Aging, 30, 1587-1600, https://doi.org/10.1016/j.neurobiolaging.2007.12.013.
  47. Nicoletti, V. G., Santoro, A. M., Grasso, G., Vagliasindi, L. I., Giuffrida, M. L., Cuppari, C., Purrello, V. S., Stella, A. M., and Rizzarelli, E. (2007) Carnosine interaction with nitric oxide and astroglial cell protection, J. Neurosci. Res., 85, 2239-2245, https://doi.org/10.1002/jnr.21365.
  48. Ke, C. J., He, Y. H., He, H. W., Yang, X., Li, R., and Yuan, J. (2014) A new spectrophotometric assay for measuring pyruvate dehydrogenase complex activity: a comparative evaluation, Anal. Methods, 6, 6381-6388, https:// doi.org/10.1039/c4ay00804a.
  49. Roelofs, K. (2017) Freeze for action: neurobiological mechanisms in animal and human freezing, Philos. Trans. R. Soc. Lond. B Biol. Sci., 372, https://doi.org/10.1098/rstb.2016.0206.
  50. Page, S. W. (2008) Antiparasitic drugs, in Small Animal Clinical Pharmacology (Maddison, J. E., Page, S. W., and Church, D. B., eds) Saunders Ltd., Philadelphia, pp. 198-260.
  51. Bunik, V. I., Artiukhov, A. V., Kazantsev, A. V., Aleshin, V. A., Boyko, A. I., Ksenofontov, A. L., Lukashev, N. V., and Graf, A. V. (2022) Administration of phosphonate inhibitors of dehydrogenases of 2-oxoglutarate and 2-oxoadipate to rats elicits target-specific metabolic and physiological responses, Front. Chem., 10, 892284, https:// doi.org/10.3389/fchem.2022.892284.
  52. Sambon, M., Pavlova, O., Alhama-Riba, J., Wins, P., Brans, A., and Bettendorff, L. (2022) Product inhibition of mammalian thiamine pyrophosphokinase is an important mechanism for maintaining thiamine diphosphate homeostasis, Biochim. Biophys. Acta Gen. Subj., 1866, 130071, https://doi.org/10.1016/j.bbagen.2021.130071.
  53. Bunik, V. I., Raddatz, G., and Strumilo, S. A. (2013) Translating enzymology into metabolic regulation: the case of the 2-oxoglutarate dehydrogenase multienzyme complex, Curr. Chem. Biol., 7, 74-93, https://doi.org/10.2174/ 2212796811307010008.
  54. Graf, A., Trofimova, L., Ksenofontov, A., Baratova, L., and Bunik, V. (2020) Hypoxic adaptation of mitochondrial metabolism in rat cerebellum decreases in pregnancy, Cells, 9, https://doi.org/10.3390/cells9010139.
  55. Kazyken, D., Dame, S. G., Wang, C., Wadley, M., and Fingar, D. C. (2024) Unexpected roles for AMPK in the suppression of autophagy and the reactivation of MTORC1 signaling during prolonged amino acid deprivation, Autophagy, 20, 2017-2040, https://doi.org/10.1080/15548627.2024.2355074.
  56. Barnaba, C., Broadbent, D. G., Kaminsky, E. G., Perez, G. I., and Schmidt, J. C. (2024) AMPK regulates phagophore-to-autophagosome maturation, J. Cell Biol., 223, https://doi.org/10.1083/jcb.202309145.
  57. Seliger, C., Rauer, L., Wuster, A. L., Moeckel, S., Leidgens, V., Jachnik, B., Ammer, L. M., Heckscher, S., Dettmer, K., Riemenschneider, M. J., Oefner, P. J., Proescholdt, M., Vollmann-Zwerenz, A., and Hau, P. (2023) Heterogeneity of amino acid profiles of proneural and mesenchymal brain-tumor initiating cells, Int. J. Mol. Sci., 24, https:// doi.org/10.3390/ijms24043199.
  58. Welch, N., Singh, S. S., Kumar, A., Dhruba, S. R., Mishra, S., Sekar, J., Bellar, A., Attaway, A. H., Chelluboyina, A., Willard, B. B., Li, L., Huo, Z., Karnik, S. S., Esser, K., Longworth, M. S., Shah, Y. M., Davuluri, G., Pal, R., and Dasarathy, S. (2021) Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes, J. Biol. Chem., 297, 101023, https://doi.org/10.1016/ j.jbc.2021.101023.
  59. Fitzpatrick, S. M., Hetherington, H. P., Behar, K. L., and Shulman, R. G. (1989) Effects of acute hyperammonemia on cerebral amino acid metabolism and pHi in vivo, measured by 1H and 31P nuclear magnetic resonance, J. Neurochem., 52, 741-749, https://doi.org/10.1111/j.1471-4159.1989.tb02517.x.
  60. Haberle, J. (2013) Clinical and biochemical aspects of primary and secondary hyperammonemic disorders, Arch. Biochem. Biophys., 536, 101-108, https://doi.org/10.1016/j.abb.2013.04.009.
  61. Boyko, A. I., Artiukhov, A. V., Kaehne, T., di Salvo, M. L., Bonaccorsi di Patti, M. C., Contestabile, R., Tramonti, A., and Bunik, V. I. (2020) Isoforms of the DHTKD1-encoded 2-oxoadipate dehydrogenase, identified in animal tissues, are not observed upon the human DHTKD1 expression in bacterial or yeast systems, Biochemistry (Moscow), 85, 920-929, https://doi.org/10.1134/S0006297920080076.
  62. Artiukhov, A. V., Grabarska, A., Gumbarewicz, E., Aleshin, V. A., Kahne, T., Obata, T., Kazantsev, A. V., Lukashev, N. V., Stepulak, A., Fernie, A. R., and Bunik, V. I. (2020) Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues, Sci. Rep., 10, 1886, https://doi.org/10.1038/s41598-020-58701-4.
  63. Fan, J., Li, D., Chen, H. S., Huang, J. G., Xu, J. F., Zhu, W. W., Chen, J. G., and Wang, F. (2019) Metformin produces anxiolytic-like effects in rats by facilitating GABA(A) receptor trafficking to membrane, Br. J. Pharmacol., 176, 297-316, https://doi.org/10.1111/bph.14519.
  64. Li, G. F., Zhao, M., Zhao, T., Cheng, X., Fan, M., and Zhu, L. L. (2019) Effects of metformin on depressive behavior in chronic stress rats, Zhongguo Ying Yong Sheng Li Xue Za Zhi, 35, 245-249, https://doi.org/10.12047/ j.cjap.5775.2019.052.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (430KB)
3. Fig. 1. Schematic of animal experiments. Metformin (M) and amprolium (A) injections were administered on the indicated days for 24 days. The first three injections of metformin at a dose of 200 mg/kg body weight were followed by 15 injections of metformin at a dose of 70 mg/kg body weight. Each of the metformin injections was followed by a second injection of amprolium at a dose of 40 mg/kg body weight. Physiological and biochemical tests were performed on the indicated days as described in the Materials and Methods section

Download (143KB)
4. Fig. 2. Levels of TDP, NAD+, antioxidant peptides carnosine and glutathione (GSH), oxidised glutathione (GSSG), and the ratio of reduced and oxidised glutathione in the cerebral cortex of rats treated with metformin/amprolium (M+A) compared with control animals

Download (183KB)
5. Fig. 3. Activation of TKT (a), MAC (b) and OGDC (c) by addition of TDP to the reaction medium measuring enzymatic activities in the cerebral cortex of control and metformin/amprolium-treated rats (M+A). In the upper panel, hollow and shaded dots indicate activities measured without and in the presence of TDF, respectively (statistical analysis using ANOVA with repeated measures). The lower panel shows the comparison of the fractions of endogenous TCT apoenzymes, MAC and OGDC in treated and control samples calculated as [1 - (Activity without TDP)/(Activity in the presence of TDP)] × 100%. The outlier excluded from the analysis is denoted by the symbol ‘x’

Download (282KB)
6. Fig. 4. Changes (in %) in the content of amino acids and related compounds in the cerebral cortex of rats treated with metformin/amprolium, compared with control animals (n = 12 in each group). Outliers excluded from statistical analyses are not shown because they are outside the range of the y-axis. * Significant difference from control values taken as 100%

Download (206KB)
7. Fig. 5. Changes in rat behaviour in the open-field test (a, b) and ECG parameters (c) as a function of duration of chronic administration of metformin/amprolium (M+A) compared to control rats. Significant differences between groups are shown in the graphs; statistically significant factors such as ‘treatment’ with metformin/amprolium and ‘duration of treatment’ and their interaction are shown below the graphs (according to ANOVA with repeated measures and Shidak's posteriori test)

Download (426KB)
8. Fig. 6. Correlation matrices of physiological and biochemical parameters in control rats. The highlighted horizontal lines divide the parameters into five groups: (1) ECG parameters, (2) anxiety parameters, (3) exploratory and locomotor activity parameters, (4) activities of TDP-dependent enzymes together with TDP level, and (5) levels of NAD+, amino acids and related compounds

Download (1MB)
9. Fig. 7. Correlation matrices of physiological and biochemical parameters after chronic administration of metformin/amprolium. The highlighted horizontal lines divide the parameters into five groups: (1) ECG parameters, (2) anxiety parameters, (3) exploratory and locomotor activity parameters, (4) TDP-dependent enzyme activities together with TDP levels, and (5) levels of NAD+, amino acids and related compounds

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences