Multicomponent synthesis of nicotinamides and thieno[2,3-b]pyridines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New nicotinamide derivatives have been synthesized by reactions of enamino ketones, aryl(hetaryl)methylidenecyanothioacetamides, alkylating agents, formamide, and cycloalkanones. The structure of some of the synthesized compounds has been determined by X-ray analysis.

Full Text

Restricted Access

About the authors

I. V. Dyachenko

Lugansk State Pedagogical University

Email: nenajdenko@gmail.com
ORCID iD: 0000-0001-7255-3446
Russian Federation, ul. Oboronnaya, 2, Lugansk, 291011

V. D. Dyachenko

Lugansk State Pedagogical University

Email: nenajdenko@gmail.com
ORCID iD: 0000-0002-0993-4091
Russian Federation, ul. Oboronnaya, 2, Lugansk, 291011

P. V. Dorovatovskii

National Research Center “Kurchatov Institute”

Email: nenajdenko@gmail.com
Russian Federation, ul. Acad. Kurchatova, 1, Moscow, 123182

V. N. Khrustalev

Peoples’ Friendship University of Russia (RUDN University); Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: nenajdenko@gmail.com
ORCID iD: 0000-0001-8806-2975
Russian Federation, ul. Miklukho-Maklaya, 6, Moscow, 117198; Leninsky prosp., 47, Moscow, 119991

V. G. Nenajdenko

Lomonosov Moscow State University

Author for correspondence.
Email: nenajdenko@gmail.com
ORCID iD: 0000-0001-9162-5169
Russian Federation, Leninskie Gory, 1/3, Moscow, 119991

References

  1. Amelia T., Veldhoven J. P.D., Falsini M., Liu R., Heitman L. H., Westen G. J.P., Segala E., Verdon G., Cheng R. K.Y., Cooke R. M., Es D., Ijzerman A. P. J. Med. Chem. 2021, 64, 3827–3842. doi: 10.1021/acs.jmedchem.0c01856
  2. Mekky A.E.M., Sanad S. M.H. J. Heterocycl. Chem. 2020, 57, 4278–4290. doi: 10.1002/jhet.4134
  3. Тирзите Д., Краузе А., Зубарева А., Тирзитис Г., Дубурс Г. ХГС, 2002, 38, 902–907. [Tirzite D., Krauze A., Zubareva A., Tirzitis G., Duburs G. Chem. Heterocycl. Compd. 2002, 38, 795–800.] doi: 10.1023/A:1020625519073
  4. Leon R., Rioc C., Marco-Contelles J., Lopez M. G., Garcia A. G., Villarroya M. Eur. J. Med. Chem. 2008, 43, 668–674. doi: 10.1016/j.ejmech.2007.06.001
  5. Краузе А., Баумане Л., Силе Л., Чернова Л., Вилюмс М., Витолиня Р., Дубурс Г., Страдынь Я. ХГС. 2004, 40, 1022–1035. [Krauze A., Baumane L., Sile L., Chernova L., Vilums M., Vitolina R., Duburs G., Stradins J. Chem. Heterocyclic Comp. 2004, 40, 876–887.] doi: 10.1023/B:COHC.0000044570.13567.74
  6. Abdel-Fattah A.M., Attaby F. A., Elneairy M. A.A., Gouda M. N.M. Curr. Bioact. Compd. 2012, 8, 176–187. doi: 10.2174/157340712801784769
  7. Osolodkin D.I., Kozlovskaya L. I., Dueva E. V., Dotsenko V. V., Rogova Y. V., Frolov K. A., Krivokolysko S. G., Romanova E. G., Morozov A. S., Karganova G. G., Palyulin V. A., Pentkovski V. M., Zefirov N. S. ACS Med. Chem. Lett. 2013, 4, 869–874. doi: 10.1021/ml400226s
  8. Attia A.M.E., Elshehawy A. A. Nucleosid., Nucleotid. Nucl. Acids. 2003. 22, 1737–1746. doi: 10.1081/NCN-120023269
  9. Дяченко В.Д. ЖОрХ. 2006, 42, 957–958. [Dyachenko V. D. Russ. J. Org. Chem. 2006, 42, 940–941.] doi: 10.1134/S1070428006060236
  10. Бурый Д.С., Доценко В. В., Аксенов Н. А., Аксенова И. В., Кривоколыско С. Г., Дядюченко Л. В. ЖОХ. 2019, 89, 1182–1194. [Buryi D. S., Dotsenko V. V., Aksenov N. A., Aksenova I. V., Krivokolysko S. G., Dyadyuchenko L. V. Russ. J. Gen. Chem. 2019, 89, 1575–1585.] doi: 10.1134/S1070363219080061
  11. Рыльская Т.А., Дяченко В. Д. ЖОрХ. 2011, 47, 779. [Ryl’skaya T.A., Dyachenko V. D. Russ. J. Org. Chem. 2011, 47, 787–788.] doi: 10.1134/S107042801105023X.
  12. Дяченко В.Д., Чернега А. Н., Гарасевич С. Г. ЖОХ. 2005, 75, 1688–1694. [Dyachenko V. D., Chernega A. N. Garasevich S. G. Russ. J. Gen. Chem. 2005, 75, 1610–1617.] doi: 10.1007/s11176–005–0475–8
  13. Дяченко В.Д., Битюкова О. С., Дяченко А. Д. ЖОХ. 2011, 81, 857–868. [Dyachenko V. D., Bityukova O. S., Dyachenko A. D., Shishkin O. V. Russ. J. Gen. Chem. 2011, 81, 944–955.] doi: 10.1134/S1070363211050185
  14. Дяченко В.Д., Ткачев Р. П. ЖОрХ. 2002, 38, 768–771. [Dyachenko V. D., Tkachev R. P. Russ. J. Org. Chem. 2002. 38, 731–734.] doi: 10.1023/A:1019675425526
  15. Abu-Shanab F.A., Mousa S. A.S., Sherif S. M. Hassan M. I. Int. J. Org. Chem. 2014, 4, 319–330. doi: 10.4236/ijoc.2014.45035
  16. Дяченко В.Д. ЖОХ. 2005, 75, 483–492. [Dyachenko V. D. Russ. J. Gen. Chem. 2005, 75, 447–456.] doi: 10.1007/s11176–005–0248–4
  17. Elansary A.K., Moneer A. A., Kadry H. H., Gedawy E. M. Arch. Pharm. Res. 2012, 35, 1909–1917. doi: 10.1007/s12272–012–1107–6
  18. Дяченко В.Д., Красников Д. А. ЖОрХ. 2012, 48, 958–961. [Dyachenko V. D., Krasnikov D. A. Russ. J. Org. Chem. 2012, 48, 953–956.] doi: 10.1134/S1070428012070111
  19. Albrecht-Küpper B.E., Leineweber K., Nell P. G. Purinergic Signalling. 2012, 8 (Suppl. 1), 91–99. doi: 10.1007/s11302–011–9274–3
  20. Attaby F.A., Elghandour A. H.H., Ali M. A., Ibrahem Y. M. Phosph., Sulfur, Silicon Relat. Elem. 2007, 182, 695–709. doi: 10.1080/10426500601087277
  21. Дяченко В.Д. ЖОрХ. 2011, 47, 1508–1511. [Dyachenko V. D. Russ. J. Org. Chem. 2011, 47, 1535–1539.] doi: 10.1134/S1070428011100150
  22. Nasr T., Bondock S., Eid S. Eur. J. Med. Chem. 2014, 84, 491–504. doi: 10.1016/j.ejmech.2014.07.052
  23. Дяченко В.Д., Дяченко А. Д. ЖОрХ. 2006, 42, 1107–1108. [Dyachenko V. D., Dyachenko A. D. Russ. J. Org. Chem. 2006, 42, 1091–1092.] doi: 10.1134/S1070428006070311
  24. Дяченко И.В. ЖОХ. 2019, 89, 701–706. [Dyachenko I. V. Russ. J. Gen. Chem. 2019, 89, 896–900.] doi: 10.1134/S1070363219050062.
  25. Дяченко И.В., Дяченко В. Д., Дороватовский П. В., Хрусталев В. Н., Ненайденко В. Г. Изв. АН Сер. хим. 2021, 70, 2145–2155. [Dyachenko I. V., Dyachenko V. D., Dorovatovskii P. V., Khrustalev V. N., Nenajdenko V. G. Russ. Chem. Bull. 2021, 70, 2145–2155.] doi: 10.1007/s11172–021–3326–9
  26. Дяченко И.В., Дяченко В. Д., Дороватовский П. В., Хрусталев В. Н., Ненайденко В. Г. Изв. АН Сер. хим. 2021, 70, 949–959. [Dyachenko I. V., Dyachenko V. D., Dorovatovskii P. V., Khrustalev V. N., Nenajdenko V. G. Russ. Chem. Bull. 2021, 70, 949–959.] doi: 10.1007/s11172–021–3172–9
  27. Дяченко И.В., Дяченко В. Д. ЖОХ. 2015, 85, 980–984. [Dyachenko I. V., Dyachenko V. D. Russ. J. Gen. Chem. 2015, 85, 1447–1451.] doi: 10.1134/S1070363215060146
  28. Ненайденко В. Г. Усп. хим. 2020, 89, 1274–1336. [Nenajdenko V. G. Russ. Chem. Rev. 2020, 89, 1274–1336.] doi: 10.1070/RCR5010
  29. Дяченко И.В., Дяченко В. Д., Дороватовский П. В., Хрусталев В. Н., Ненайденко В. Г. ЖОрХ, 2021, 57, 1560–1576 [Dyachenko I. V., Dyachenko V. D., Dorovatovskii P. V., Khrustalev V. N., Nenajdenko V. G. Russ. J. Org. Chem. 2021, 57, 1809–1823.] doi: 10.1134/S1070428021110026
  30. Дяченко И.В., Дяченко В. Д., Дороватовский П. В., Хрусталев В. Н., Ненайденко В. Г. ЖОрХ. 2022, 58, 469–475. [Dyachenko I. V., Dyachenko V. D., Dorovatovskii P. V., Khrustalev V. N., Nenajdenko V. G. Russ. J. Org. Chem. 2022, 58, 648–656.] doi: 10.1134/S1070428022050025
  31. Дяченко И.В., Дяченко В. Д., Дороватовский П. В., Хрусталев В. Н., Ненайденко В. Г. ЖОрХ. 2018, 54, 1263–1273. [Dyachenko I. V., Dyachenko V. D., Dorovatovskii P. V., Khrustalev V. N., Nenajdenko V. G. Russ. J. Org. Chem. 2018, 54, 1273–1284.] doi: 10.1134/S1070428018090014
  32. Дяченко И.В., Дяченко В. Д., Дороватовский П. В., Хрусталев В. Н., Ненайденко В. Г. ЖОрХ. 2019, 55, 266–278. [Dyachenko I. V., Dyachenko V. D., Dorovatovskii P. V., Khrustalev V. N., Nenajdenko V. G. Russ. J. Org. Chem. 2019, 55, 215–226.] doi: 10.1134/S1070428019020131
  33. Дяченко И.В., Дяченко В. Д., Дороватовский П. В., Хрусталев В. Н., Ненайденко В. Г. ЖОрХ. 2018, 54, 1423–1433. [Dyachenko I. V., Dyachenko V. D., Dorovatovskii P. V., Khrustalev V. N., Nenajdenko V. G. Russ. J. Org. Chem. 2018, 54, 1435–1445.] doi: 10.1134/S1070428018100019
  34. Вацуро К.В., Мищенко Г.Л. Именные реакции в органической химии. М.: Химия, 1976.
  35. Stork G., Landesman H. J. Am. Chem. Soc. 1956, 78, 5128–5129. doi: 10.1021/ja01600a087
  36. Дяченко В.Д., Барышев Б. Н., Ненайденко В. Г. Усп. хим. 2022, 91, RCR5039. [Dyachenko V. D., Baryshev B. N., Nenajdenko V. G. Russ. Chem. Rev. 2022, 91, RCR5039.] doi: 10.1070/RCR5039
  37. Литвинов В.П., Шаранин Ю. А., Гончаренко М. П., Дяченко В. Д., Шестопалов А. М. Изв. АН СССР, Сер. хим., 1991, 40, 1888–1895. [Litvinov V. P., Sharanin Yu.A., Goncharenko M. P., Dyachenko V. D., Shestopalov A. M. Russ. Chem. Bull. 1991. 40, 1675–1681.] doi: 10.1007/BF01172273
  38. Красников Д.А., Дяченко В. Д., Шишкина С. В., Шишкин О. В. ЖОХ. 2010, 80, 305–308. [Krasnikov D. A., Dyachenko V. D., Shishkina S. V., Shishkin O. V. Russ. J. Gen. Chem. 2010, 80, 330–333.] doi: 10.1134/S1070363210020234
  39. Нестеров В.Н., Шкловер В. Е., Стручков Ю. Т., Шаранин Ю. А., Гончаренко М. П., Дяченко В. Д. Изв. АН СССР, Сер. хим. 1991, 40, 521–523. [Nesterov V. N., Shklover V. E., Struchkov Y. T., Struchkov Yu.T., Sharanin Yu.A., Goncharenko M. P., Dyachenko V. D. Russ. Chem. Bull. 1991. 40, 453–454.] doi: 10.1007/BF00965452
  40. Prabhakaran J., Majo V. J., Milak M. S., Kassir S. A., Palner M., Savenkova L., Mali P., Arango V., Mann J. J., Parsey R. V., Kumar J. S.D. Bioorg. Med. Chem. Lett. 2010, 20, 3499–3501. doi: 10.1016/j.bmcl.2010.04.146
  41. Bakhite E.A., Abdel-Rahman A.E., Al-Taifi E. A. Phosph., Sulfur, Silicon Relat. Elem. 2004, 179, 513–520. https://doi.org/10.1080/10426500490422155
  42. Hussein A.M., Abu-Shanab F.A., Ishak E. A. Phosph., Sulfur, Silicon Relat. Elem. 2000, 159, 55–68. doi: 10.1080/10426500008043650
  43. Battye T.G.G., Kontogiannis L., Johnson O., Powell H. R., Leslie A. G.W. Acta Cryst. 2011, 67, 271–281. doi: 10.1107/S0907444910048675
  44. Evans P. R. Acta Cryst. 2006, 62, 72–82. doi: 10.1107/S0907444905036693
  45. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2013.
  46. Krause L., Herbst-Irmer R., Sheldrick G. M., Stalke D., J. Appl. Cryst. 2015, 48, 3–10. doi: 10.1107/S1600576714022985
  47. Sheldrick G. M. Acta Cryst. 2015, 71, 3–8. doi: 10.1107/S2053229614024218

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (288KB)
3. Scheme 2

Download (260KB)
4. Fig. 1. Molecular structure of compound 5 with atoms represented by anisotropic displacement ellipsoids with 50% probability according to X-ray diffraction data. The dotted line shows the intramolecular hydrogen bond N─H⋅⋅⋅O

Download (81KB)
5. Fig. 2. Crystal structure of compound 5 along the crystallographic axis a. The dotted lines show intra- and intermolecular hydrogen bonds.

Download (244KB)
6. Fig. 3. Molecular structure of compound 7b with atoms represented by anisotropic displacement ellipsoids with 50% probability according to X-ray diffraction data

Download (87KB)
7. Fig. 4. Centrosymmetric dimers in the crystal of compound 7b. The dotted line shows intermolecular hydrogen bonds.

Download (88KB)
8. Fig. 5. Crystal structure of compound 7b along the crystallographic axis c

Download (160KB)
9. Fig. 6. Molecular structure of compound 8 with atoms represented by anisotropic displacement ellipsoids with 50% probability according to X-ray diffraction data

Download (85KB)
10. Fig. 7. Crystal structure of compound 8 showing a corrugated layer parallel to the (010) plane, two projections along the crystallographic axes b (a) and c (b) are shown.

Download (251KB)
11. Fig. 8. Molecular structure of the compound 9⋅H2O with atoms represented by ellipsoids of anisotropic displacements with 40% probability according to X-ray diffraction data. The dotted line shows hydrogen bonds. The thickened dotted line shows the alternative position of the disordered propyl substituent.

Download (95KB)
12. Fig. 9. Centrosymmetric dimers in the crystal of the compound 9⋅H2O. The dotted line shows hydrogen bonds.

Download (72KB)
13. Fig. 10. Crystal structure of the compound 9⋅H2O, showing two-tiered layers parallel to the (100) plane, two projections along the crystallographic axes a (a) and c (b) are shown

Download (278KB)
14. Figure from Contents

Download (205KB)

Copyright (c) 2024 Russian Academy of Sciences