The methods of antibacterial activity investigation and mechanism of antimicrobial action of drug molecules encapsulated in delivery systems
- Authors: Skuredina A.A.1, Belogurova N.G.1, Kudryashova E.V.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 61, No 2 (2025)
- Pages: 109-127
- Section: Articles
- URL: https://genescells.com/0555-1099/article/view/687468
- DOI: https://doi.org/10.31857/S0555109925020013
- EDN: https://elibrary.ru/ENIIBM
- ID: 687468
Cite item
Abstract
Due to the diversity of the structure and supramolecular architecture of existing antibacterial drug delivery systems, the question of choosing methods for in vitro properties research of the proposed drug forms (DF) and determining the effect of the carrier on the antimicrobial properties of the drug in the research laboratory is especially relevant. The review examines the main microbiological methods of antimicrobial activity investigation that are used in the study of DF, and provides recommendations for choosing a research method in accordance with the type and chemical nature of drug carrier. In addition, instrumental methods and experimental techniques for studying the mechanism of antimicrobial action of DF, as well as in vitro effects, which are most often observed in the literature when the drug is encapsulated in a carrier, are discussed. This review provides the researcher with a strategy for analyzing the antimicrobial properties of the DF based on the system’s physico-chemical properties that allows a more comprehensive assessment of the future prospects of drugs.
Full Text

About the authors
A. A. Skuredina
Lomonosov Moscow State University
Author for correspondence.
Email: anna.skuredina@yandex.ru
Department of Chemistry
Russian Federation, Moscow, 119991N. G. Belogurova
Lomonosov Moscow State University
Email: anna.skuredina@yandex.ru
Department of Chemistry
Russian Federation, Moscow, 119991E. V. Kudryashova
Lomonosov Moscow State University
Email: anna.skuredina@yandex.ru
Department of Chemistry
Russian Federation, Moscow, 119991References
- Damian F., Harati M., Schwartzenhauer J., Van Cauwenberghe O., Wettig S.D. // Pharmaceutics. 2021. V. 13. № 2. P. 214. https://doi.org/10.3390/pharmaceutics13020214
- Pradal J. // J. Pain Res. 2020. V. 13. P. 2805–2814. https://doi.org/10.2147/JPR.S262390
- Veiga M.-D., Ruiz-Caro R., Martín-Illana A., Notario-Pérez F., Cazorla-Luna R. // Polymer Gels. 2018. P. 197–246. https://doi.org/10.1007/978-981-10-6083-0_8
- Adepu S., Ramakrishna S. // Molecules. 2021. V. 26. № 19. P. 5905. https://doi.org/10.3390/molecules26195905
- Sultana A., Zare M., Thomas V., Kumar T.S.S., Ramakrishna S. // Med. Drug Discov. 2022. V. 15. P. 100134. https://doi.org/10.1016/j.medidd.2022.100134
- Shirley M. // Drugs. 2019. V. 79. № 5. P. 555–562. https://doi.org/10.1007/s40265-019-01095-z
- Adler-Moore J., Proffitt R.T. // J. Antimicrob. Chemother. 2002. V. 49. P. 21–30. https://doi.org/10.1093/jac/49.suppl_1.21
- Liu P., Chen G., Zhang J. // Molecules. 2022. V. 27. № 4. P. 1372. https://doi.org/10.3390/molecules27041372
- Park H., Otte A., Park K. // J. Control. Release. 2022. V. 342. P. 53–65. https://doi.org/10.1016/j.jconrel.2021.12.030
- Gao W., Chen Y., Zhang Y., Zhang Q., Zhang L. // Adv. Drug Deliv. Rev. 2018. V. 127. P. 46–57. https://doi.org/10.1016/j.addr.2017.09.015
- Devnarain N., Osman N., Fasiku V.O., Makhathini S., Salih M., Ibrahim U.H. et al. // Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021. V. 13. № 1. https://doi.org/10.1002/wnan.1664
- Zhang W., Hu E., Wang Y., Miao S., Liu Y., Hu Y. et al. // Int. J. Nanomedicine. 2021. V. 16. P. 6141–6156. https://doi.org/10.2147/IJN.S311248
- Mohapatra A., Harris M.A., LeVine D., Ghimire M., Jennings J.A., Morshed B.I. et al. // J. Biomed. Mater. Res. Part B Appl. Biomater. 2018. V. 106. № 6. P. 2169–2176. https://doi.org/10.1002/jbm.b.34015
- Eskitoros-Togay Ş.M., Bulbul Y.E., Tort S., Demirtaş Korkmaz F., Acartürk F., Dilsiz N. // Int. J. Pharm. 2019. V. 565. P. 83–94. https://doi.org/10.1016/j.ijpharm.2019.04.073
- Güncüm E., Bakırel T., Anlaş C., Ekici H., Işıklan N. // J. Vet. Pharmacol. Ther. 2018. V. 41. № 4. P. 588–598. https://doi.org/10.1111/jvp.12505
- Que Y., Yang Y., Zafar H., Wang D. // Front. Pharmacol. 2022. V. 13. https://doi.org/10.3389/fphar.2022.993095
- Abou Assi R., M. Abdulbaqi I., Seok Ming T., Siok Yee C., A. Wahab H., Asif S.M. et al. // Pharmaceutics. 2020. V. 12. № 11. P. 1052. https://doi.org/10.3390/pharmaceutics12111052
- Методические Указания. 2004. № ББК 52.64. 1–91 p.
- Balouiri M., Sadiki M., Ibnsouda S.K. // J. Pharm. Anal. Elsevier, 2016. V. 6. № 2. P. 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
- Li J., Rong K., Zhao H., Li F., Lu Z., Chen R. // J. Nanosci. Nanotechnol. 2013. V. 13. № 10. P. 6806–6813. https://doi.org/10.1166/jnn.2013.7781
- Guo L., Gong S., Wang Y., Sun Q., Duo K., Fei P. // Foodborne Pathog. Dis. 2020. V. 17. № 6. P. 396–403. https://doi.org/10.1089/fpd.2019.2713
- Ando Y., Miyamoto H., Noda I., Miyaji F., Shimazaki T., Yonekura Y. et al. // Biocontrol Sci. 2010. V. 15. № 1. P. 15–19. https://doi.org/10.4265/bio.15.15
- Mohammadi G., Valizadeh H., Barzegar-Jalali M., Lotfipour F., Adibkia K., Milani M. et al. // Colloids Surfaces B Biointerfaces. Elsevier B.V., 2010. V. 80. № 1. P. 34–39. https://doi.org/10.1016/j.colsurfb.2010.05.027
- Mostafa A.A., Al-Askar A.A., Almaary K.S., Dawoud T.M., Sholkamy E.N., Bakri M.M. // Saudi J. Biol. Sci. 2018. V. 25. № 2. P. 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004
- Liu X., Cai J., Chen H., Zhong Q., Hou Y., Chen W. et al. // Microb. Pathog. 2020. V. 141. P. 103980. https://doi.org/10.1016/j.micpath.2020.103980
- Dev A., Mohan J.C., Sreeja V., Tamura H., Patzke G.R., Hussain F. et al. // Carbohydr. Polym. 2010. V. 79. № 4. P. 1073–1079. https://doi.org/10.1016/j.carbpol.2009.10.038
- Uyen Thanh N., Abdul Hamid Z., Thi L., Ahmad N. // J. Drug Deliv. Sci. Technol. 2020. V. 58. P. 101796. https://doi.org/10.1016/j.jddst.2020.101796
- Chao Y., Zhang T. // Langmuir. 2011. V. 27. № 18. P. 11545–11553. https://doi.org/10.1021/la202534p
- Naveed M., Tianying H., Wang F., Yin X., Chan M.W.H., Ullah A. et al. // Curr. Res. Biotechnol. 2022. V. 4. P. 290–301. https://doi.org/10.1016/j.crbiot.2022.06.002
- Skuredina A.A., Tychinina A.S., Le-Deygen I.M., Golyshev S.A., Kopnova T.Y., Le N.T. et al. // Polymers. 2022. V. 14. P. 4476. https://doi.org/10.3390/ polym14214476
- Kavanagh A., Ramu S., Gong Y., Cooper M.A., Blaskovich M.A.T. // Antimicrob. Agents Chemother. 2019. V. 63. № 1. https://doi.org/10.1128/AAC.01760-18
- Bock L.J., Hind C.K., Sutton J.M., Wand M.E. // Lett. Appl. Microbiol. 2018. V. 66. № 5. P. 368–377. https://doi.org/10.1111/lam.12863
- Lahuerta Zamora L., Pérez-Gracia M.T. // J.R. Soc. Interface. 2012. V. 9. № 73. P. 1892–1897. https://doi.org/10.1098/rsif.2011.0809
- Schug A.R., Bartel A., Scholtzek A.D., Meurer M., Brombach J., Hensel V. et al. // Vet. Microbiol. 2020. V. 248. P. 108791. https://doi.org/10.1016/j.vetmic.2020.108791
- Pinna A., Donadu M.G., Usai D., Dore S., Boscia F., Zanetti S. // Cornea. 2020. V. 39. № 11. P. 1415–1418. https://doi.org/10.1097/ICO.0000000000002375
- Lozano G.E., Beatriz S.R., Cervantes F.M., María G.N.P., Francisco J.M.C. // African J. Microbiol. Res. 2018. V. 12. № 31. P. 736–740. https://doi.org/10.5897/AJMR2018.8893
- Rodríguez-López M.I., Mercader-Ros M.T., Pellicer J.A., Gómez-López V.M., Martínez-Romero D., Núñez-Delicado E. et al. // Food Control. 2020. V. 108. P. 106814. https://doi.org/10.1016/j.foodcont.2019.106814
- Darbasizadeh B., Fatahi Y., Feyzi-barnaji B., Arabi M., Motasadizadeh H., Farhadnejad H. et al. // Int. J. Biol. Macromol. 2019. V. 141. P. 1137–1146. https://doi.org/10.1016/j.ijbiomac.2019.09.060
- Kamimura J.A., Santos E.H., Hill L.E., Gomes C.L. // LWT — Food Sci. Technol. 2014. V. 57. № 2. P. 701–709. https://doi.org/10.1016/j.lwt.2014.02.014
- Natsaridis E., Gkartziou F., Mourtas S., Stuart M.C.A., Kolonitsiou F., Klepetsanis P. et al. // Pharmaceutics. 2022. V. 14. № 2. P. 370. https://doi.org/10.3390/pharmaceutics14020370
- García-González C.A., Barros J., Rey-Rico A., Redondo P., Gómez-Amoza J.L., Concheiro A. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 4. P. 3349–3360. https://doi.org/10.1021/acsami.7b17375
- Kucukoglu V., Uzuner H., Kenar H., Karadenizli A. // Int. J. Pharm. 2019. V. 569. P. 118578. https://doi.org/10.1016/j.ijpharm.2019.118578
- Aytac Z., Yildiz Z.I., Kayaci-Senirmak F., Tekinay T., Uyar T. // Food Chem. 2017. V. 231. P. 192–201. https://doi.org/10.1016/j.foodchem.2017.03.113
- Jug M., Kosalec I., Maestrelli F., Mura P. // J. Pharm. Biomed. Anal. 2011. V. 54. № 5. P. 1030–1039. https://doi.org/10.1016/j.jpba.2010.12.009
- Bhuyan S., Yadav M., Giri S.J., Begum S., Das S., Phukan A. et al. // J. Microbiol. Methods. 2023. V. 207. P. 106707. https://doi.org/10.1016/j.mimet.2023.106707
- Thomas P., Sekhar A.C., Upreti R., Mujawar M.M., Pasha S.S. // Biotechnol. Reports. 2015. V. 8. P. 45–55. https://doi.org/10.1016/j.btre.2015.08.003
- Boukouvalas D.T., Belan P., Leal C.R.L., Prates R.A., de Araújo S.A. 2019. P. 410–418. https://doi.org/10.1007/978-3-030-13469-3_48
- Chen C., Qu F., Wang J., Xia X., Wang J., Chen Z. et al. // J. Therm. Anal. Calorim. 2016. V. 123. № 2. P. 1583–1590. https://doi.org/10.1007/s10973-015-4999-9
- EUCAST Definitive Document E.DEF 3.1, June 2000: Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Agar Dilution. // Clinical Microbiology and Infection. 2000. V. 6. № 9. P. 509–515. https://doi.org/10.1046/j.1469-0691.2000.00142.x
- Mączyńska B., Paleczny J., Oleksy-Wawrzyniak M., Choroszy-Król I., Bartoszewicz M. // Pathogens. 2021. V. 10. № 5. P. 512. https://doi.org/10.3390/pathogens10050512
- Huang D., Zuo Y., Zou Q., Zhang L., Li J., Cheng L. et al. // J. Biomater. Sci. Polym. Ed. 2011. V. 22. № 7. P. 931–944. https://doi.org/10.1163/092050610X496576
- Taha M., Chai F., Blanchemain N., Neut C., Goube M., Maton M. et al. // Int. J. Pharm. 2014. V. 477. № 1–2. P. 380–389. https://doi.org/10.1016/j.ijpharm.2014.10.026
- Orszulik S.T. // Expert Rev. Mol. Diagn. 2020. V. 20. № 3. P. 277–283. https://doi.org/10.1080/14737159.2020.1719070
- Orszulik S.T. // J. Microbiol. Methods. 2022. V. 200. P. 106538. https://doi.org/10.1016/j.mimet.2022.106538
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST. Version 9.0. 2019. http://www.eucast.org
- Missoun F., Ríos A.P. de los, Ortiz-Martínez V., Salar-García M.J., Hernández-Fernández J., Hernández-Fernández F.J. // Processes. 2020. V. 8. № 9. https://doi.org/10.3390/PR8091163
- Li Y., Zhou J., Gu J., Shao Q., Chen Y. // Colloids Surfaces B Biointerfaces. 2022. V. 215. P. 112514. https://doi.org/10.1016/j.colsurfb.2022.112514
- Skuredina A., Le-Deygen I., Belogurova N., Kudryashova E. // Carbohydr. Res. 2020. P. 108183. https://doi.org/10.1016/j.carres.2020.108183
- Azhdarzadeh M., Lotfipour F., Zakeri-Milani P., Mohammadi G., Valizadeh H. // Adv. Pharm. Bull. 2012. V. 2. № 1. P. 17–24. https://doi.org/10.5681/apb.2012.003
- Almekhlafi S., Thabit A.A.M. // J. Chem. Pharm. Res. 2014. V. 6. № 3. P. 1242–1248.
- Valizadeh H., Mohammadi G., Ehyaei R., Milani M., Azhdarzadeh M., Zakeri-Milani P. et al. // Pharmazie. 2012. V. 67. № 1. P. 63–68. https://doi.org/10.1691/ph.2012.1052
- Jabir M.S., Taha A.A., Sahib U.I. // Artif. Cells, Nanomedicine, Biotechnol. 2018. V. 46. P. 345–355. https://doi.org/10.1080/21691401.2018.1457535
- Furneri P.M., Fresta M., Puglisi G., Tempera G. // Antimicrob. Agents Chemother. 2000. V. 44. № 9. P. 2458–2464. https://doi.org/10.1128/AAC.44.9.2458-2464.2000
- Le-Deygen I.M., Mamaeva P.V., Skuredina A.A., Safronova A.S., Belogurova N.G., Kudryashova E.V. // J. Funct. Biomater. 2023. V. 14. № 7. P. 381. https://doi.org/10.3390/jfb14070381
- Klančnik A., Piskernik S., Jeršek B., Možina S.S. // J. Microbiol. Methods. 2010. V. 81. № 2. P. 121–126. https://doi.org/10.1016/j.mimet.2010.02.004
- Arasoglu T., Derman S., Mansuroglu B., Yelkenci G., Kocyigit B., Gumus B. et al. // J. Appl. Microbiol. 2017. V. 123. № 6. P. 1407–1419. https://doi.org/10.1111/jam.13601
- Hoang Thi T.H., Chai F., Leprêtre S., Blanchemain N., Martel B., Siepmann F. et al. // Int. J. Pharm. 2010. V. 400. № 1–2. P. 74–85. https://doi.org/10.1016/j.ijpharm.2010.08.035
- Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. // Fitoterapia. 2017. V. 118. P. 56–62. https://doi.org/10.1016/j.fitote.2017.02.008
- Liang H., Yuan Q., Vriesekoop F., Lv F. // Food Chem. 2012. V. 135. № 3. P. 1020–1027. https://doi.org/10.1016/j.foodchem.2012.05.054
- Skuredina A.A., Yakupova L.R., Le-Deygen I.M., Kudryashova E.V. // Lomonosov Chem. J. 2023. V. 64. № №5, 2023. P. 441–459. https://doi.org/10.55959/MSU0579-9384-2-2023-64-5-441-459
- Harish Prashanth K.V., Tharanathan R.N. // Trends Food Sci. Technol. 2007. V. 18. № 3. P. 117–131. https://doi.org/10.1016/j.tifs.2006.10.022
- Chen C.Z., Cooper S.L. // Biomaterials. 2002. V. 23. № 16. P. 3359–3368. https://doi.org/10.1016/S0142-9612(02)00036-4
- He M., Wu T., Pan S., Xu X. // Appl. Surf. Sci. 2014. V. 305. P. 515–521. https://doi.org/10.1016/j.apsusc.2014.03.125
- Kochan K., Perez-Guaita D., Pissang J., Jiang J.H., Peleg A.Y., McNaughton D. et al. // J.R. Soc. Interface. 2018. V. 15. № 140. https://doi.org/10.1098/rsif.2018.0115
- Wongthong S., Tippayawat P., Wongwattanakul M., Poung-ngern P., Wonglakorn L., Chanawong A. et al. // World J. Microbiol. Biotechnol. 2020. V. 36. № 2. P. 22. https://doi.org/10.1007/s11274-019-2788-5
- Yakupova L.R., Skuredina A.A., Kopnova T.Y., Kudryashova E.V. // Polysaccharides. 2023. V. 4. № 4. P. 343–357. https://doi.org/10.3390/polysaccharides4040020
- Dillen K., Bridts C., Van der Veken P., Cos P., Vandervoort J., Augustyns K. et al. // Int. J. Pharm. 2008. V. 349. № 1–2. P. 234–240. https://doi.org/10.1016/j.ijpharm.2007.07.041
- Skuredina A.A., Tychinina A.S., Le-Deygen I.M., Golyshev S.A., Belogurova N.G., Kudryashova E.V. // React. Funct. Polym. 2021. V. 159. № 498. P. 104811. https://doi.org/10.1016/j.reactfunctpolym.2021. 104811
- Camacho-Cruz L.A., Velazco-Medel M.A., Cruz-Gómez A., Bucio E. // Advanced Antimicrobial Materials and Applications. 2021. P. 1–42. https://doi.org/10.1007/978-981-15-7098-8_1
- Vaara M. // Microbiol. Rev. 1992. V. 56. № 3. P. 395–411.
- Rybal’chenko O.V. // Microbiology. 2006. V. 75. № 4. P. 476–480. https://doi.org/10.1134/S0026261706040187
- Ulvatne H., Haukland H.., Olsvik Ø., Vorland L. // FEBS Lett. 2001. V. 492. № 1–2. P. 62–65. https://doi.org/10.1016/S0014-5793(01)02233-5
- Geilich B.M., van de Ven A.L., Singleton G.L., Sepúlveda L.J., Sridhar S., Webster T.J. // Nanoscale. 2015. V. 7. № 8. P. 3511–3519. https://doi.org/10.1039/C4NR05823B
- Skuredina A.A., Kopnova T.Y., Tychinina A.S., Golyshev S.A., Le-deygen I.M., Belogurova N.G. et al. // Molecules. 2022. V. 27. P. 8026. https://doi.org/10.3390/molecules27228026
- Nicolosi D., Scalia M., Nicolosi V.M., Pignatello R. // Int. J. Antimicrob. Agents. 2010. V. 35. № 6. P. 553–558. https://doi.org/10.1016/j.ijantimicag.2010.01.015
- Song J., Han B., Song H., Yang J., Zhang L., Ning P. et al. // J. Environ. Radioact. 2019. V. 208–209. P. 106027. https://doi.org/10.1016/j.jenvrad.2019.106027
- Kumar Tyagi A., Bukvicki D., Gottardi D., Veljic M., Guerzoni M.E., Malik A. et al. // Evidence-Based Complement. Altern. Med. 2013. V. 2013. P. 1–7. https://doi.org/10.1155/2013/382927
- Jaiswal S., Mishra P. // Med. Microbiol. Immunol. 2018. V. 207. № 1. P. 39–53. https://doi.org/10.1007/s00430-017-0525-y
- Fahimmunisha B.A., Ishwarya R., AlSalhi M.S., Devanesan S., Govindarajan M., Vaseeharan B. // J. Drug Deliv. Sci. Technol. Elsevier, 2020. V. 55. № November 2019. P. 101465. https://doi.org/10.1016/j.jddst.2019.101465
- Ishwarya R., Vaseeharan B., Subbaiah S., Nazar A.K., Govindarajan M., Alharbi N.S. et al. // J. Photochem. Photobiol. B Biol. 2018. V. 183. P. 318–330. https://doi.org/10.1016/j.jphotobiol.2018.04.049
- Dufrêne Y.F., Viljoen A., Mignolet J., Mathelié‐Guinlet M. // Cell. Microbiol. 2021. V. 23. № 7. https://doi.org/10.1111/cmi.13324
- Zamani E., Johnson T.J., Chatterjee S., Immethun C., Sarella A., Saha R. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 44. P. 49346–49361. https://doi.org/10.1021/acsami.0c12038
- Guo R., Li K., Qin J., Niu S., Hong W. // Nanoscale. 2020. V. 12. № 20. P. 11251–11266. https://doi.org/10.1039/D0NR01366H
- Kochan K., Peleg A.Y., Heraud P., Wood B.R. // J. Vis. Exp. 2020. № 163. https://doi.org/10.3791/61728
- Duverger W., Tsaka G., Khodaparast L., Khodaparast L., Louros N., Rousseau F. et al. // J. Nanobiotechnology. 2024. V. 22. № 1. P. 406. https://doi.org/10.1186/s12951-024-02674-3
- Gollwitzer H., Ibrahim K., Meyer H., Mittelmeier W., Busch R., Stemberger A. // J. Antimicrob. Chemother. 2003. V. 51. № 3. P. 585–591. https://doi.org/10.1093/jac/dkg105
- Jeong Y. Il, Na H.S., Seo D.H., Kim D.G., Lee H.C., Jang M.K. et al. // Int. J. Pharm. 2008. V. 352. № 1–2. P. 317–323. https://doi.org/10.1016/j.ijpharm.2007.11.001
- Baghdan E., Raschpichler M., Lutfi W., Pinnapireddy S.R., Pourasghar M., Schäfer J. et al. // Eur. J. Pharm. Biopharm. 2019. V. 139. P. 59–67. https://doi.org/10.1016/j.ejpb.2019.03.003
- Скуредина А.А., Ле-Дейген И.М., Кудряшова Е.В. // Коллоидный журнал. 2018. V. 80. № 3. P. 330–337. https://doi.org/10.7868/s0023291218030102
- Mousavian D., Mohammadi Nafchi A., Nouri L., Abedinia A. // J. Food Meas. Charact. 2021. V. 15. № 1. P. 883–891. https://doi.org/10.1007/s11694-020-00690-z
- Wang H., Hao L., Wang P., Chen M., Jiang S., Jiang S. // Food Hydrocoll. 2017. V. 63. P. 437–446. https://doi.org/10.1016/j.foodhyd.2016.09.028
- Banoee M., Seif S., Nazari Z.E., Jafari‐Fesharaki P., Shahverdi H.R., Moballegh A. et al. // J. Biomed. Mater. Res. Part B Appl. Biomater. 2010. V. 93B. № 2. P. 557–561. https://doi.org/10.1002/jbm.b.31615
- Chotitumnavee J., Parakaw T., Srisatjaluk R.L., Pruksaniyom C., Pisitpipattana S., Thanathipanont C. et al. // J. Dent. Sci. 2019. V. 14. № 1. P. 7–14. https://doi.org/10.1016/j.jds.2018.08.010
- Queiroz V.M., Kling I.C.S., Eltom A.E., Archanjo B.S., Prado M., Simão R.A. // Mater. Sci. Eng. Elsevier B.V. 2020. V. 112. P. 110852. https://doi.org/10.1016/j.msec.2020.110852
Supplementary files
