Growth-regulating activity of brassinosteroid compositions with ferulic acid on spring wheat plants

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of steroid phytohormones (24-epibrassinolide and 24-epicastasterone), ferulic acid and their mixtures at all stages of ontogenesis on growth, morphoformation, physiological and biochemical processes and grain productivity of spring wheat (Triticum aestivum L.) was studied. Compounds and their mixtures (in equimolar ratio) were used by spraying plants with solutions of substances in optimal concentrations. The dynamics of changes in the content of steroid phytohormones at the early stages of plant development and ontogenesis have been studied. It was shown that treatment of plants by spraying with brassinosteroids or ferulic acid led to the activation of growth processes, the productivity of morphogenesis and reproduction, and an increase in the level of endogenous brassinosteroids, free radical oxidation and pigments. The combined use of brassinosteroids and ferulic acid increased the effectiveness of their action, exhibiting a synergistic interaction in stimulating growth and metabolic processes and leading to an increase in yield, as well as an improvement in grain quality.

全文:

受限制的访问

作者简介

R. Litvinovskaya

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

编辑信件的主要联系方式.
Email: litvin@iboch.by
白俄罗斯, Minsk, 220084

N. Manzhalesava

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: litvin@iboch.by
白俄罗斯, Minsk, 220084

A. Sauchuk

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: litvin@iboch.by
白俄罗斯, Minsk, 220084

D. Denisiuk

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: litvin@iboch.by
白俄罗斯, Minsk, 220084

I. Brui

National Academy of Sciences of the Republic of Belarus for Arable Farming

Email: litvin@iboch.by

Research and Practical Center

白俄罗斯, Zhodino, 222160

V. Khripach

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: litvin@iboch.by
白俄罗斯, Minsk, 220084

参考

  1. Khripach V., Zhabinskii V., De Groot A. // Annals of Botany. 2000. V. 86. P. 441–447. https://doi.org/10.1006/anbo.2000.1227
  2. Nanstaelen M., Benkova E. // Annual Review of Cell and Development Biology. 2012. V. 28. P. 463–487. https://doi.org/10/1146/annurev-cellbio-101011-155741
  3. Cheynier V., Comte G., Davis K.M., Lattanzio V., Martens S. // Plant Physiol. Biochem. 2013. V. 72. P. 1. https://doi.org/10.1016/j.plaphy.2013.05.009
  4. Kumar S., Abedin M.M., Singh A.K., Das S. // Plant Phenolics in Sustainable Agriculture. / Eds. R. Lone et al. Singapore: Springer Nature, 2020. P. 517. https://doi.org/10.1007/978-981-15-4890-1_22517
  5. Babalic Z. // J. Agric. Sci. 2021. V. 27. № 3. P. 298–303. https://doi.org/10.15832/ancutbd.674860
  6. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. // Am. J. Clin. Nutr. 2004. V. 79. P. 727. https://doi.org/10.1093/ajcn/79.5.727
  7. Manzhalesava N.E., Litvinovskaya R.P., Savchuk A.L., Denisyuk D.V., Khripach V.A. // Russian Journal of Plant Physiology. 2024. V. 71. Р. 97. https://doi.org/10.1134/S1021443724606426
  8. Ламан Н.А., Кем К.Р., Хрипач В.А., Судник А.Ф. // Докл. НАН Беларуси. 2016. Т. 60. № 6. С. 84–90. https://doklady.belnauka.by/jour/article/view/376
  9. Доспехов Б.А. Методика полевого опыта. М.: Агропромиздат, 1985. 351 с.
  10. Привалов Ф.И., Павловский В.К., Гракун В.В., Лапа В.В., Сорока С.В., Вахонин Н.К., Шиманский Л.П. Организационно-технологические нормативы возделывания зерновых, зернобобовых, крупяных культур // Сборник отраслевых регламентов. Нац. акад. наук Беларуси, НПЦ НАН Беларуси по земледелию / Под ред. В.Г. Гусакова, Ф.И. Привалова. http://fhfortuna.com/f/privalov_fi_organizatsionno-tekhnologicheskiye_normativy_vozdelyvaniya_zernovykh_zernobobovykh_krupyanykh_kultur_2012_kopiya.pdf
  11. Meier U. Growth stages of mono- and dicotyledonous plants: BBCH Monograph. Quedlinburg: Julius Kühn-Institut, 2018. 204 p. https://doi.org/10.5073/20180906-074619
  12. Патент РФ. 2005. № 244916.
  13. De Vos C.H.R., Schat H., Vooijs R., Ernst W.H.O. // J. Plant Physiol. 1989. V. 135. P. 164.
  14. Khripach V.A., Zhabinskii V.N., Litvinovskaya RP. // Brassinosteroids: a Сlass of Рlant Hormones. / Eds. S. Hayat, A. Ahmad. Springer. 2011. P. 375–392.
  15. Pradko A.G., Litvinovskaya R.P., Sauchuk A.L., Drach S.V., Baranovsky A.V., Zhabinskii V.N., etal.// Steroids. 2015. V. 97. P. 78. https://doi.org/10.1016/j.steroids.2014.08.022
  16. Hatfield J.L., Prueger J.H. // Weather and Climate Extremes. 2015. №10. P. 4. https://doi.org/1016/j.wace.2015.08.01
  17. Khripach V.A., Zhabinskii V.N., Khripach N.B. New Practical Aspects of Brassinosteroids and Results of their Ten-year Agricultural Use in Russia and Belarus // Brassinosteroids. Bioactivity and Crop Productivity. / Eds. S. Hayat, A. Ahmad. Dordrecht: Kluwer Academic Pablisher, 2003. P. 189–230. https://doi.org/10.1007/978-94-017-0948-4_9
  18. Nolan T.M., Vukasinovic N., Liu D., Russinova E., Yin Y. // Plant Cell. 2020. V. 32. P. 295. https://doi.org/10/1105/tpc.19.00335
  19. Khan N.A., Khan S., Naz N., Shah M., Irfanullah, Ahmad S., Sher H., Khan A. // International Journal of Biosciences. 2017. V. 11. № 4. P. 173. http://dx.doi.org/10.12692//ijb/11/4/173-183
  20. Kohila S., Gomathi R. // Indian J. Plant Physiol. 2018. V. 23. № 2. P. 245. https://doi.org/10.1007/s40502-018-0363-y
  21. Лиховидова В.А., Газе В.Л., Ионова Е.В. // Аграрная наука. 2020. Т. 340. № 7. С. 86. https://doi.org/10.32634/0869-8155-2020-340-7-86-89
  22. Apel K., Hirt H. Reactive // Annu. Rev. Plant Biol. 2004. V. 55. P. 373. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  23. Gill S., Tuteja N. // Plant Physiol. Biochem. 2010. V. 48. P. 909. https://doi.org/10.1016/j.plaphy.2010.08.016
  24. Sung J.M., Jeng T.L // Physiologia Plantarum. 1994. V. 91. № 1. P. 51. https://doi.org/10.1111/j.1399-3054.1994.tb00658.x
  25. Mangano S., Martínez Pacheco J., Marino-Buslje C., Estevez J.M. // Trends in Plant Science. 2018. V. 23. № 6. P. 479. https://doi.org/10.1016/j.tplants.2018.02.008
  26. Breygina M., Schekaleva O., Klimenko E., Luneva O. // Plants. 2022. V. 11. P. 993. https://doi.org/10.3390/plants11070993
  27. Miller G., Suzuk N., Ciftci-Yilmaz S., Mittler R. // Plant Cell Environ. 2010. V. 33. P. 453. https://doi.org/10.1111/j.1365-3040.2009.02041.x

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Effect of EB, EC, FA and equimolar mixtures of EB or EC with FA on the content of 24R-methylbrassinosteroids in Triticum aestivum L. cultivar Madonna plants on days 7 (a) and 14 (b) from the start of treatment with substance solutions under laboratory conditions: 0 — control (sample fixed on the day of treatment before its start), 1 — control (water); 2 — EB (10–9 M), 3 — EB (10–7 M), 4 — EC (10–9 M), 5 — EC (10–7 M), 6 — FA (10–9 M), 7 — FA (10–7 M), 8 — EB + FA (10–9 M), 9 — EB + FA (10–7 M), 10 — EC + FA (10–9 M), 11 — EC + FA (10–7 M). Significant differences at p ≤ 0.05 are marked with different letters.

下载 (148KB)
3. Fig. 2. The effect of EB, EC, FA and equimolar mixtures of EB or EC with FA on the content of 24S-methylbrassinosteroids in Triticum aestivum L. plants of the Madonna variety on days 7 (a) and 14 (b) from the start of treatment with solutions of substances under laboratory conditions: 0 - control (the sample was fixed on the day of treatment before its start), 1 - control (water); 2 — EB (10–9 M), 3 — EB (10–7 M), 4 — EC (10–9 M), 5 — EC (10–7 M), 6 — FC (10–9 M), 7 — FC (10–7 M), 8 — EB + FC (10–9 M), 9 — EB + FC (10–7 M), 10 — EC + FC (10–9 M), 11 — EC + FC (10–7 M). Significant differences at the p ≤ 0.05 level are marked with different letters.

下载 (171KB)
4. Fig. 3. Effect of EB, EC, FA and equimolar mixtures of EB or EC with FA on the content of 28-homobrassinosteroids in Triticum aestivum L. cultivar Madonna plants on days 7 (a) and 14 (b) from the start of treatment with substance solutions under laboratory conditions: 0 — control (sample fixed on the day of treatment before its start), 1 — control (water); 2 — EB (10–9 M), 3 — EB (10–7 M), 4 — EC (10–9 M), 5 — EC (10–7 M), 6 — FA (10–9 M), 7 — FA (10–7 M), 8 — EB + FA (10–9 M), 9 — EB + FA (10–7 M), 10 — EC + FA (10–9 M), 11 — EC + FA (10–7 M). Significant differences at p ≤ 0.05 are marked with different letters.

下载 (156KB)
5. Fig. 4. Effect of EB, EC, FA and equimolar mixtures of EB or EC with FA on the content of 24R-methylbrassinosteroids in Triticum aestivum L. cultivar Madonna plants at the flowering (a), milky (b) and waxy grain ripeness (c) phases under field conditions: 0 — control (sample fixed at the boot stage before treatment), 1 — control (water); 2 — EB (25 mg/ha), 3 — EC (25 mg/ha), 4 — EB (25 mg/ha) + FA (10 mg/ha), 5 – EB (12.5 mg/ha) + FA (10 mg/ha), 6 — EC (25 mg/ha) + FA (10 mg/ha). Significant differences at the level of p ≤ 0.05 are marked with different letters.

下载 (168KB)
6. Fig. 5. Effect of EB, EC, FA and their equimolar mixtures of EB or EC with FA on the content of 24S-methylbrassinosteroids in Triticum aestivum L. cultivar Madonna plants at the flowering (a), milky (b) and waxy grain ripeness (c) phases under field conditions: 0 — control (sample fixed at the boot stage before treatment), 1 — control (water); 2 — EB (25 mg/ha), 3 — EC (25 mg/ha), 4 — EB (25 mg/ha) + FA (10 mg/ha), 5 — EB (12.5 mg/ha) + FA (10 mg/ha), 6 — EC (25 mg/ha) + FA (10 mg/ha). Significant differences at the level of p ≤ 0.05 are marked with different letters.

下载 (190KB)
7. Fig. 6. Effect of EB, EC, FA and equimolar mixtures of EB or EC with FA on the content of 28-homobrassinosteroids in Triticum aestivum L. cultivar Madonna plants at the flowering (a), milky (b) and waxy grain ripeness (c) phases under field conditions: 0 — control (sample fixed at the boot stage before treatment), 1 — control (water); 2 — EB (25 mg/ha), 3 — EC (25 mg/ha), 4 — EB (25 mg/ha) + FA (10 mg/ha), 5 — EB (12.5 mg/ha) + FA (10 mg/ha), 6 — EC (25 mg/ha) + FA (10 mg/ha). Significant differences at the level of p ≤ 0.05 are marked with different letters.

下载 (191KB)

版权所有 © Russian Academy of Sciences, 2025