Membrane-Protective effect of lipid extract of Marine Red Seaweed Ahnfeltia tobuchiensis (Kanno et Matsubara) Makienko under experimental carbone tetrachloride poisoning

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Carbon tetrachloride (CCl4) disrupts the stable operation of biological membranes, causing disturbances in the lipid bilayer, as well as changes in the properties of membrane lipids. The protective effect of lipid complex isolated from the marine red alga Ahnfeltia tobuchiensis and the reference drug “Essentiale” was investigated on the plasma membranes of mouse erythrocytes, obtained in the modeling of toxic hepatitis induced byCCl₄. The lipid extract from A. tobuchiensis was not inferior in efficiency to the phospholipid preparation essenciale in restoring the indices of both membrane lipids and blood plasma lipids, as well as in normalizing the parameters of antioxidant protection of the organism. The membrane-protective effect of algal extract is due to its multicomponent composition including glyco- and phospholipids with predominance of polyunsaturated fatty acids of n-3 and n-6 families.

Full Text

Restricted Access

About the authors

S. E. Fomenko

Il’ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences

Author for correspondence.
Email: sfomenko@poi.dvo.ru
Russian Federation, Vladivostok, 690041

N. F. Kushnerova

Il’ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences

Email: sfomenko@poi.dvo.ru
Russian Federation, Vladivostok, 690041

V. G. Sprygin

Il’ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences

Email: sfomenko@poi.dvo.ru
Russian Federation, Vladivostok, 690041

References

  1. Беседнова Н. Н. Морские гидробионты – потенциальные источники лекарств. // Здоровье. Медицинская экология. Наука. 2014. Т. 57, № 3. С. 4–10.
  2. Венгеровский А. И., Маркова И. В., Саратиков А. С. Методические указания по изучению гепатозащитной активности фармакологических веществ // Руководство по экспериментальному (доклиническому) изучению новых фармакологических средств. М.: ОАО Издательство “Медицина”, 2005. С. 683–691.
  3. Грибанов Г. А. Особенность структуры и биологическая роль лизофосфолипидов // Вопр. мед. химии. 1991. Т. 37, № 4. С. 2–16.
  4. Мухомедзянова С. В. Пивоваров Ю. И. Богданова О. В., Дмитриева Л. А., Шулунов А. А. Липиды биологических мембран в норме и патологии (обзор литературы) // Acta biomedical scientifica. 2017. Т. 2, № 5(1). С. 43–49. https://doi.org/10.12737/article_59e8bcd3d6fcb1.49315019
  5. Руководство по проведению доклинических исследований лекарственных средств. Ч.1. М.: Гриф и К, 2012. 944 с.
  6. Соколова Е. В., Барабанова А. О., Хоменко В. А., Соловьева Т. Ф., Богданович Р. Н., Ермак И. М. Изучение in vitro и ex vivo антиоксидантной активности каррагинанов – сульфатированных полисахаридов красных водорослей // Бюлл. экспериментальной биологии и медицины. 2010. Т. 150, № 10. С. 398–401.
  7. Суховерхов С. В., Кадникова И. А., Подкорытова А. В. Получение агара и агарозы из красных водорослей Ahnfeltia tobuchiensis // Прикл. биохим. микробиол. 2000. Т.36, № 2. С. 238–240.
  8. Титлянов Э. А., Титлянова Т. В. Морские растения стран Азиатско–Тихоокеанского региона, их использование и культивирование. Владивосток: Дальнаука, 2012. 377 с.
  9. Хотимченко С. В. Липиды морских водорослей-макрофитов и трав. Структура, распределение, анализ. Владивосток: Дальнаука, 2003. 230 с.
  10. Ahmad F. F., Cowan D. L., Sun A. Y. Detection of free radical formation in various tissues after acute carbon tetrachloride administration in gerbil // Life Sci. 1987. V. 41. P. 2469–2475. https://doi.org/10.1016/0024-3205(87)90673-4
  11. Akyuz F., Aydin O., Demir T. A., Kanbak G. The effects ofCCl₄ on Na+/K+-ATPase and trace elements in rats // Biol. Trace Elem. Res. 2009. Vol. 132, № 1–3. P 207–214. https://doi.org/10.1007/s12011-009-8395-9
  12. Allen D., Hasanally D., Ravandi A. Role oxidized phospholipids in cardiovascuiar pathology // Clin Lipidol. 2013. V. 8. P. 205–215. https://doi.org/10.2217/clp.13.13.
  13. Amenta J. S. A rapid chemical method for quantification of lipids separated by thin-layer chromatography // J. Lipid Res. 1964. V. 5. P. 270–272. https://doi.org/10.1016/S0022-2275 (20)40251-2
  14. Asztalos I. B., Gleason J. A., Sever S., Gedik R., Asztalos B. F., Horvath K. V., Dansinger M. L., Lamon-Fava S., Schaefer E. J. Effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular disease risk factors: a randomized clinical trial // Metab. Clin. Exp. 2016. V. 65, № 11. P. 1636–1645. https://doi.org/10.1016/j.metabol.2016.07.010
  15. Bartosz G., Janaszewska A., Ertel D., Bartosz M. Simple determination of peroxyl radical-trapping capacity // Biochem Mol Biol Int. 1998. V. 46. P. 519–528. https://doi.org/10.1080/15216549800204042
  16. Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. 1959. V. 37, № 8. P. 911–917.
  17. Boll M., Weber L. W., Becker E., Stampfl A. Pathogenesis of carbon tetrachloride-induced hepatocyte injury bioactivation ofCCl₄ by cytochrome P450 and effects on lipid homeostasis // Z. Naturforsch C. J. Biosci. 2001. V. 56 (1–2). P. 111–21. https://doi.org/10.1515/znc-2001-1-218
  18. Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods in Enzymology. 1978. N.Y.: Academic Press. V. 52. P. 302–310.
  19. Cumming D. S., Mchowat J., Schnellmann R. G. Phospholipase À2s in cell injury and death // J. pharmacol experim therapeutic. 2000. V. 294. P. 793–799.
  20. Fomenko S. E., Kushnerova N. F., Sprygin V. G., Drugova E. S., Lesnikova L. N., Merzlyakov V. Y., Momot T. V. Lipid composition, content of polyphenols, and antiradical activity in some representatives of marine algae // Russ. J. Plant. Physiol. 2019. V. 66, № 6. P. 942–949. https://doi.org/10.1134/S1021443719050054
  21. Garrel C., Alessandri J.-M., Guesnet P., Al-Gubory K.H. Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development // Int. J. Biochem. Cell Biol. 2012. V. 44, № 1. P. 123–131. https://doi.org/10.1016/j.biocel.2011.10.007
  22. Jump D. B., Depner C. M., Tripathy S., Lytle K. A. Potential for dietary omega-3 fatty acids to prevent nonalcoholic fatty liver disease and reduce the risk of primary liver cancer // Adv. Nutr. 2015. V. 6. № 6. P. 694–702. https://doi.org/10.3945/an.115.009423
  23. Khotimchenko S. V., Gusarova I. S. Red algae of peter the great bay as a source of arachidonic and eicosapentaenoic acids // Russian Journal of Marine Biology. 2004. V. 30, № 3. P. 183–187. https://doi.org/10.1023/B:RUMB.0000033953.67105.6b
  24. Kostetsky E. Y., Goncharova S. N., Sanina N. M., Shnyrov V. L. Season influence on lipid composition of marine macrophytes // Bot. Mar. 2004. V. 47, № 2. P. 134–139. http://dx.doi.org/10.1515/BOT.2004.013.
  25. Kushnerova N. F., Fomenko S. E., Sprygin V. G., Momot T. V. The Effects of the lipid complex of extract from the marine red alga Ahnfeltia tobuchiensis (Kanno et Matsubara) Makienko on the biochemical parameters of blood plasma and erythrocyte membranes during experimental stress exposure // Russian Journal of Marine Biology. 2020. Vol. 46, № 4. P. 277–283. http://dx.doi.org/10.1134/S1063074020040057
  26. Manibusan M. K., Odin M., Eastmond D. A. Postulated carbon tetrachloride mode of action: a review // J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2007. Vol. 25, № 3. P. 185–209. https://doi.org/10.1080/10590500701569398
  27. Massaccesi L., Galliera E., Romanelli M. M. C. Erythrocytes as markers of oxidative stress related pathologies // Mech. Ageing Dev. 2020. V. 191. P. 111333. https://doi.org/10.1016/j.mad.2020.111333.
  28. Menon V. V., Lele S. S. Nutraceuticals and bioactive compounds from seafood processing waste. In Springer Handbook of Marine Biotechnology. Springer: Berlin/Heidelberg. Germany. 2015. P. 1405–1425. http://dx.doi.org/10.1007/978-3-642-53971-8_65
  29. Muriel P., Mourelle M. The role of membrane composition in ATPase activities of cirrhotic rat liver: effect of silymarin. J Appl Toxicol. 1990. V.10. P. 281–284. https://doi.org/10.1002/jat.2550100409
  30. Nava-Ocampo A.A., Suster S., Muriel P. Effect of colchiceine and ursodeoxycholic acid on hepatocyte and erythrocyte membranes and liver histology in experimentally induced carbon tetrachloride cirrhosis in rats // European journal of clinical investigation. 1997. V. 27. P. 77–84. https://doi.org/10.1046/j.1365-2362.1997.910615.x
  31. Ohnishi ST. Importance of biological membranes in disease processes. In: Ohnishi ST, Ohnishi T, eds. Cellular Membrane. A Key to Disease Processes. Florida: CRC Press. 1993. P. 3–19.
  32. Paoletti F., Aldinucci D., Mocali A., Caparrini A. A sensitive spectrophotometric method for the determination of superoxide-dismutase activity in tissue-extracts. Analyt Biochem. 1986. V. 154. P. 536–541. https://doi.org/10.1016/0003-2697(86)90026-6
  33. Richard D., Kefi K., Barbe U., Bausero P., Visioli F. Polyunsaturated fatty acids as antioxidants // Pharmacol. Res. 2008. V. 57, № 6. P. 451–455. https://doi.org/10.1016/j.phrs.2008.05.002
  34. Rouser G., Kritchevsky G., Yamamoto A. Column chromatographic and associated procedures for separation and determination of phosphatides and glicolipids // Lipid Chromatographic Analysis. New York: Dekker, 1967. V. 1. P. 99–162.
  35. Ruxton C. H.S., Calder P. C., Reed S. C., Simpson M. J.A. The impact of long-chain n-3 polyunsaturated fatty acids on human health // Nutr Res Reviews. 2005. V. 18. P. 113–129. https://doi.org/10.1079/nrr200497
  36. Sanzgiri U. Y., Srivatsan V., Muralidhara S., Dallas C. E., Bruckner J. V. Uptake, distribution, and elimination of carbon tetrachloride in rat tissues following inhalation and ingestion exposures // Toxicol. Appl. Pharmacol. 1997. V. 143, № 1. P. 120–129. https://doi.org/10.1006/taap.1996.8079
  37. Shevchenko O. G., Shishkina L. N. Comparative analysis of phospholipid composition in blood erythrocytes of various species of mouse-like rodents // J. Evol. Biochem. Physiol. 2011. V. 47, № 2. P. 179–186. http://dx.doi.org/10.1134/S0022093011020071
  38. Sprygin V. G., Kushnerova N. F., Fomenko S. E. Effect of a lipid complex from the marine red alga Ahnfeltia tobuchiensis on the metabolic responses of the liver under conditions of experimental toxic hepatitis // Biology Bulletin. 2021. V. 48, Suppl. 3. P. S10–S18. https://doi.org/10.1134/S1062359022010149.
  39. Sprygin V. G., Kushnerova N. F., Fomenko S.E Drugova E. S., Lesnikova L. N., Merzlyakov V. Y. Lipid-correcting and antioxidant effects of the lipid complex from the red marine algae Ahnfeltia tobuchiensis under the conditions of a high-fat diet // Biology Bulletin. 2024. V. 51, № 1. P 37–46. http://dx.doi.org/10.1134/S1062359023601982
  40. Suleria H. A., Masci P., Gobe G., Osborne S. Current and potential uses of bioactive molecules from marine processing waste // J. Sci. Food Agric. 2016. V. 96. P. 1064–1067. https://doi.org/10.1002/jsfa.7444
  41. Vascovsky V. E., Kostetsky E. Y., Vasendin I. M. Universal Reagent for Phospholipid Analysis // J. Chromatography. 1975. V. 114. P. 129–141. https://doi.org/10.1016/s0021-9673(00)85249-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Content of total lipids (a), neutral lipid fractions (b) and phospholipids (c) in the lipid extract of the red alga Ahnfeltia tobuchiensis. OL – total lipids, GL – glycolipids, PL – phospholipids, NL – neutral lipids, DAG + MAG – diacylglycerols + monoacylglycerols, SS – free sterols, FFA – free fatty acids, TAG – triacylglycerols, ES – sterol esters, PC – phosphatidylcholine, PG – phosphatidylglycerol, PE – phosphatidylethanolamine, PI – phosphatidylinositol, PS – phosphatidylserine.

Download (341KB)
3. Fig. 2. Effect of lipid extract of Ahnfeltia and Essentiale on parameters of antioxidant system of blood plasma of mice under CCl₄ intoxication. MDA – malondialdehyde, ARA – antiradical activity, SOD – superoxide dismutase, Es – Essentiale, An – Ahnfeltia. Designations are statistically significant: * – p <0.05; ** – p <0.01; *** – p <0.001 – when compared with control. + – p <0.05; ++ – p <0.01; +++ – p <0.001 – when compared with group 3 (CCl₄ withdrawal) for Fig. 2, 3.

Download (493KB)
4. Fig. 3. The effect of lipid extract of Ahnfeltia and Essentiale on the lipid composition of blood plasma in mice intoxicated with CCl₄.

Download (500KB)

Copyright (c) 2025 Russian Academy of Sciences