Peculiarities of Interaction of Low-Energy Noble Gas Atoms with Methyl Groups on the Low-K-Surface
- Authors: Solovykh A.A.1, Sycheva A.A.2, Voronina E.N.1,2
- 
							Affiliations: 
							- Lomonosov Moscow State University
- Skobeltsyn Institute of Nuclear Physics, Moscow State University
 
- Issue: No 2 (2023)
- Pages: 63-70
- Section: Articles
- URL: https://genescells.com/1028-0960/article/view/664612
- DOI: https://doi.org/10.31857/S1028096023020127
- EDN: https://elibrary.ru/DSWOES
- ID: 664612
Cite item
Abstract
In the current work the computer simulations were performed to study the possibility of surface functionalization of low-K materials that are used as interlayer insulators within ultralarge integration devices with low-energy (up to 30 eV) noble gas atoms. The simulations were carried out using the ab initio density functional theory method assisted with molecular dynamics algorithms implemented in VASP package. The detailed trajectory analysis revealed the conditions under which the irradiation of incident He, Ne, Ar, Xe atoms with the energy up to 30 eV may result in the illumination of near-surface methyl groups responsible for hydrophobic properties of dielectric surface. Based on the data obtained the threshold energy (the minimum atom energy for CH3-radical formation) was evaluated, and the mechanism peculiarities of such a process under light and heavy atom irradiation were studied. It was shown that in the energy range under consideration the interaction Ne, Ar, and Xe with methyl groups has mainly collisional mechanism, therefore with increase in mass of the incident particle the threshold energy increases. He atom irradiation, on the contrary, is capable to induce the perturbations of the electronic density around the methyl group that stimulate fast atom vibrations and result in CH3-detachment.
About the authors
A. A. Solovykh
Lomonosov Moscow State University
														Email: sycheva.phys@gmail.com
				                					                																			                												                								Russia, 119991, Moscow						
A. A. Sycheva
Skobeltsyn Institute of Nuclear Physics, Moscow State University
							Author for correspondence.
							Email: sycheva.phys@gmail.com
				                					                																			                												                								Russia, 119991, Moscow						
E. N. Voronina
Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics, Moscow State University
														Email: sycheva.phys@gmail.com
				                					                																			                												                								Russia, 119991, Moscow; Russia, 119991, Moscow						
References
- Baklanov M.R., Ho P.S., Zschech E. Advanced Interconnects for ULSI Technology. N.Y.: Wiley & Sons, 2012. 596 p.
- Baklanov M.R., de Marneffe J.-F., Shamiryan D., Urbanowicz A.M., Shi H., Rakhimova T.V., Huang H., Ho P.S. // J. Appl. Phys. 2013. V. 113. № 4. P. 041101. https://www.doi.org/10.1063/1.4765297
- Xu H., Hu Zh.-J., Qu X.-P., Wan H., Yan Sh.-S., Li M., Chen Sh.-M., Zhao Yu-H., Zhang J., Baklanov M.R. // Appl. Surf. Sci. 2019. V. 498. P. 143887. https://www.doi.org/10.1016/j.apsusc.2019.143887
- Lionti K., Volksen W., Magbitang T., Darnon M., Dubois G. // ECS J. Solid State Sci. Technol. 2014. V. 4. № 1. P. N3071. https://www.doi.org/10.1149/2.0081501jss
- Prager L., Marsik P., Wennrich L., Baklanov M.R., Naumov, Pistol S.L., Schneider D., Gerlach J.W., Verdonck P., Buchmeiser M.R. // Microelectronic Eng. 2008. V. 85. № 10. P. 2094. https://www.doi.org/10.1016/j.mee.2008.04.039
- Lee J., Graves D.B. // J. Phys. D Appl. Phys. 2010. V. 43. № 42. P. 425201. https://www.doi.org/10.1088/0022-3727/43/42/425201
- Sycheva A.A., Voronina E.N., Rakhimova T.V., Novikov L.S., Rakhimov A.T. // J. Vac. Sci. Technol. A. 2020. V. 38. № 5. P. 053004. https://www.doi.org/10.1116/6.0000389
- Palov A.P., Proshina O.V., Rakhimova T.V., Rakhimov A.T., Voronina E.N. // Plasma Process. Polym. 2021. V. 18. P. 2100007. https://www.doi.org/10.1002/ppap.202100007
- Соловых А.А., Сычева А.А., Воронина Е.Н. // Письма в ЖТФ. 2022. Т. 48. № 7. С. 16. https://www.doi.org/10.21883/PJTF.2022.07.52286.19085
- Кон В. // УФН. 2002. Т. 172. № 3. С. 336. https://www.doi.org/10.3367/UFNr.0172.200203e.0336
- Kresse G., Joubert D. // Phys. Rev. 1999. V. 59. № 3. P. 1758. https://www.doi.org/10.1103/PhysRevB.59.1758
- Blöchl P.E. // Phys. Rev. B. 1994. V. 50. № 24. P. 17953. https://www.doi.org/10.1103/PhysRevB.50.17953
- Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Yu., Stefanov K.S., Voevodin V.V., Zhumatiy S.A. // Supercomput. Frontiers Innovations. 2019. V. 6. № 2. P. 4. https://www.doi.org/10.14529/jsfi190201
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://www.doi.org/10.1103/PhysRevLett.77.3865
- Chaudhari M., Du J. // J. Vac. Sci. & Technol. A. 2011. V. 29. № 3. P. 031303. https://www.doi.org/10.1116/1.3568963
- Rimsza J.M., Kelber J.A., Du J. // J. Phys. D: Appl. Phys. 2014. V. 47. № 33. P. 335204. https://www.doi.org/10.1088/0022-3727/47/33/335204
- Kazi H., Rimsza J., Du J. // J. Vac. Sci. Technol. A. 2014. V. 32. № 5. P. 051301. https://www.doi.org/10.1116/1.4890119
- De Darwent B. Bond Dissociation Energies in Simple Molecules. Washington: Nat. Bur. Stand, 1970. 60 p.
- Humphrey W., Dalke A., Schulten K. // J. Molec. Graphics. 1996. V. 14. № 1. P. 33. https://www.doi.org/10.1016/0263-7855(96)00018-5
- Behrisch R., Eckstein W. Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies. Berlin: Springer-Verlag, 2007. 200 p.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					




