Estimation of Porosity of Microarc Oxide Coating Based on Optical Image Recognition
- Autores: Pecherskaya E.A.1, Maksov A.A.1, Konovalov S.V.1,2, Golubkov P.E.1, Mitrohin M.A.1, Gurin S.A.1, Novichkov M.D.1
- 
							Afiliações: 
							- Penza State University
- Siberian State Industrial University
 
- Edição: Nº 1 (2025)
- Páginas: 86-93
- Seção: Articles
- URL: https://genescells.com/1028-0960/article/view/686107
- DOI: https://doi.org/10.31857/S1028096025010123
- EDN: https://elibrary.ru/AAOXRS
- ID: 686107
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The work is aimed at solving the problem of improving the quality control of coatings with a porous structure. The problem arises due to the lack of an effective and nondestructive method for assessing the porosity of microarc oxide coatings. Accurate porosity control is necessary to ensure the reliability and durability of coatings, as well as to prevent their defects. The use of optical image recognition techniques can improve the process of indirect measurement of coating porosity and improve the quality of control without affecting the object. The factors affecting the porosity of the microarc oxide coating, as well as methods for its determination, are systematized. A method for estimating the porosity of oxide coatings of AD31 aluminum alloy samples is proposed based on a recognition program written in the MATLAB R2020a environment, surface morphology images using modern microscopy methods. A statistical analysis of the surface morphology was carried out, which confirmed good agreement between the porosity estimate and the data obtained during image processing using scanning electron microscope software. The relative error of the proposed method does not exceed 10%. The scientific novelty of the work consists in the development of algorithms for a unique nondestructive testing method — recognition of porous structures based on optical data, which contribute to increasing the efficiency of porosity estimation and improving the characteristics of oxide coatings.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
E. Pecherskaya
Penza State University
							Autor responsável pela correspondência
							Email: pea1@list.ru
				                					                																			                												                	Rússia, 							Penza, 400026						
A. Maksov
Penza State University
														Email: pea1@list.ru
				                					                																			                												                	Rússia, 							Penza, 400026						
S. Konovalov
Penza State University; Siberian State Industrial University
														Email: pea1@list.ru
				                					                																			                												                	Rússia, 							Penza, 400026; Novokuznetsk, 654007						
P. Golubkov
Penza State University
														Email: pea1@list.ru
				                					                																			                												                	Rússia, 							Penza, 400026						
M. Mitrohin
Penza State University
														Email: pea1@list.ru
				                					                																			                												                	Rússia, 							Penza, 400026						
S. Gurin
Penza State University
														Email: pea1@list.ru
				                					                																			                												                	Rússia, 							Penza, 400026						
M. Novichkov
Penza State University
														Email: pea1@list.ru
				                					                																			                												                	Rússia, 							Penza, 400026						
Bibliografia
- Buling А., Zerrer J. // Surf. Coat. Technol. 2019. V. 369. P. 142. https://doi.org/10.1016/j.surfcoat.2019.04.025
- Molaei M., Fattah-alhossini A., Nouri M., Nourian A. // Ceram. Int. 2022. V. 48. Iss. 5. P. 6322. https://doi.org/10.1016/j.ceramint.2021.11.175.
- Trushkina T.V., Mikheev A.E., Girn A.V., Vakhteev E.V., Orlova D.V. // Reshetnev Readings. 2011. V. 1. P. 38. https://cyberleninka.ru/article/n/otsenka-poristosti-pokrytiy-na-alyuminievyh-splavah-poluchennyh-mikrodugovym-oksidirovaniem
- Trushkin T.V., Girn A.V., Ravodina D.V., Alyakretsky R.V. // Reshetnev Readings. 2014. V. 1. P. 443. https://cyberleninka.ru/article/n/vliyanie-tehnologicheskih-parametrov-na-poristost-mdo-pokrytiy.
- Golubkov P.E., Pecherskaya E.A., Gurin S.A., Alexandrov V.S., Artamonov D.V., Maksov A.A. // St. Petersburg State Polytech. University J. Phys. Math. 2023. V. 16 (3.1). P. 368. https://doi.org/10.18721/JPM.163.167
- Fatimah S., Kim Y.G., Yoon D.K., Ko Y.G. // Surf. Coat. Technol. 2020. V. 385. P. 125383. https://doi.org/10.1016/j.surfcoat.2020.125383
- Mortazavi G., Jiang J., Meletis E.I. // Appl. Surf. Sci. 2019. V. 488. P. 370. https://doi.org/10.1016/j.apsusc.2019.05.250
- Moon S., Jeong Y. // Corrosion Sci. 2009. V. 51. P. 1506. https://doi.org/10.1016/j.corsci.2008.10.039
- Pecherskaya E.A., Golubkov P.E., Karpanin O.V., Artamonov D.V., Safronov M.I., Pecherskiy A.V. // Proc. Univ. Electronics. 2019. V. 24 (4). P. 363. https://doi.org/10.24151/1561-5405-2019-24-4-363-369
- Mozafarnia H., Fattah-Alhosseini A., Chaharmahali R., Nouri M., Keshavarz M.K., Kaseem M. // Coatings. 2022. V. 12. P. 1967. https://doi.org/10.3390/coatings12121967
- Hafili F., Chaharmahali R., Babaei K., Fattah-alhosseini A. // Corrosion Commun. 2021. V. 3. P. 62. https://doi.org/10.1016/j.corcom.2021.09.005
- Moga S.G., Negrea D.A., Ducu C.M., Malinovschi V., Schiopu A.G., Coaca E., Patrascu I. // Appl. Sci. 2022. V. 12. P. 12848. https://doi.org/10.3390/app122412848
- Jangde A., Kumar S., Blawert C. // J. Magn. Alloys. 2020. V. 8. P. 692. https://doi.org/10.1016/j.jma.2020.05.002
- Parfenova L.V., Galimshina Z.R., Gil`fanova G.U. et al. // Surf. Interfaces. 22. V. 28. P. 101678. https://doi.org/10.1016/j.surfin.2021.101678
- Golubkov P.E., Pecherskaya E.A., Karpanin O.V., Shepeleva Y.V., Zinchenko T.O., Artamonov D.V. // J. Phys.: Conf. Ser. 2017. V. 917. P. 092021. https://www.doi.org/10.1088/1742-6596/917/9/092021
- Pecherskaya E.A., Golubkov P.E., Artamonov D.V., Melnikov O.A., Karpanin O.V., Zinchenko T.O. // IEEE Trans. Plasma Sci. 2021. V. 49. Iss. 9. P. 2613. https://www.doi.org/10.1109/TPS.2021.3091830
- Interstate standard GOST 4784-97 “Aluminum and Aluminum Alloys Deformable. Stamps” (put into effect by Resolution № 433 of the State Standard of the Russian Federation dated December 8, 1998). https://base.garant.ru/5703611/
- Pecherskaya E.A., Golubkov P.E., Novichkov M.D., Gurin S.A., Metal’nikov A.M. // Measur. Tech. 2023. V. 66. № 6. P. 420. https://doi.org/10.1007/s11018-023-02243-4
- Pecherskaya E., Semenov A., Golubkov P., Gurin S., Artamonov D., Shepeleva Y. // Heliyon. 2023. V. 9. № 9. P. e19995. https://doi.org/10.1016/j.heliyon.2023.e19995
- Pecherskaya E.A., Semenov A.D., Golubkov P.E. // Frontier Mater. Technol. 2023. V. 4. P. 73. https://doi.org/10.18323/2782-4039-2023-4-66-7
- Melnikov O.A., Pecherskaya E.A., Golubkov P.E., Kozlov G.V., Alexandrov V.S. // St. Petersburg State Polytech. University J. Phys. Math. 2023. V. 16. № 3.1. P. 335. https://doi.org/10.18721/JPM.163.161
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




