Structure and Morphology of the Tungsten-Based Material of the First Wall of the Tokamak Divertor Before and After Irradiation with Hydrogen Plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a study of the microstructure and structure of plates made of tungsten metal powder (group of companies “Specmetalmaster”, GC “SMM”) used as protective tiles in the lower divertor of the tokamak Globus-M and subjected to additional treatment with hydrogen plasma of a coaxial accelerator from distances of 50 and 260 mm at 5, 10 and 20 irradiation cycles are presented. The microstructure and elemental composition of the plate surface were determined by scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. The microstructure of the irradiated surface layer of the plates at a penetration depth of X-rays up to ~1.4 μm was analyzed from X-ray diffraction data using graphical methods of Williamson–Hall plot and crystallite size — microstrain plot adapted to take into account the observed pseudo-Voigt type of X-ray reflections. The structure of this layer was refined using the Rietveld method. The asymmetry of tungsten (W) reflections after plasma treatment was described by a model with 2 (for samples irradiated from a distance of 260 mm) and 3 (for a distance of 50 mm) crystalline W phases of the same cubic symmetry, but with slightly different parameters of the cubic unit cell and with different values of the mean size of crystallites and the absolute value of mean microstrain in them.

Full Text

Restricted Access

About the authors

D. D. Polyakov

Ioffe Institute; LETI Saint Petersburg Electrotechnical University

Author for correspondence.
Email: aleksandr.a.levin@mail.ioffe.ru
Russian Federation, Saint Petersburg; Saint Petersburg

A. V. Voronin

Ioffe Institute

Email: aleksandr.a.levin@mail.ioffe.ru
Russian Federation, Saint Petersburg

A. V. Nashchekin

Ioffe Institute

Email: aleksandr.a.levin@mail.ioffe.ru
Russian Federation, Saint Petersburg

A. A. Levin

Ioffe Institute

Email: aleksandr.a.levin@mail.ioffe.ru
Russian Federation, Saint Petersburg

References

  1. Будаев В.П. // ВАНТ. Сер. Термоядерный синтез. 2015. Т. 38. № 4. С. 5. https://www.doi.org/10.21517/0202-3822-2015-38-4-5-33
  2. Воронин А.В., Александров А.Е., Бер Б.Я., Брунков П.Н., Борматов A.A., Гусев В.К., Демина Е.В., Новохацкий A.Н., Павлов С.И., Прусакова М.Д., Сотникова Г.Ю., Яговкина М.А. // ЖТФ. 2016. Т. 86. № 3. С. 51.
  3. Seyedhabashi M.M., Tafreshi M.A., Bidabadi B.S., Shafiei S., Abdisaray A. // Appl. Radiat. Isot. 2019. V. 154. P. 108875. https://www.doi.org/10.1016/j.apradiso.2019.108875
  4. Bhuyan M., Mohanty S.R., Rao C.V.S., Rayjada P.A., Raole P.M. // Appl. Surf. Sci. 2013. V. 264. P. 674. https://www.doi.org/10.1016/j.apsusc.2012.10.093
  5. Parish C.M., Wang K., Doerner R.P., Baldwin M.J. // Scr. Mater. 2017. V. 127. P. 132. https://www.doi.org/10.1016/j.scriptamat.2016.09.018
  6. Javadi S., Ouyang B., Zhang Z., Ghoranneviss M., Elahi A.S., Rawat R.S. // Appl. Surf. Sci. 2018. V. 443. P. 311. https://www.doi.org/10.1016/j.apsusc.2018.03.039
  7. Makhlaj V.A., Garkusha I.E., Malykhin S.V., Pugachov A.T., Landman I., Linke J., Pestchanyi S., Chebotarev V.V., Tereshin V.I. // Phys. Scr. 2009. V. 2009. № T138. P. 014060. https://www.doi.org/10.1088/0031-8949/2009/T138/014060
  8. Makhlaj V.A., Garkusha I.E., Linke J., Malykhin S.V., Aksenov N.N., Byrka O.V., Herashchenko S.S., Surovitskiy S.V., Wirtz M. // Nucl. Mat. Energ. 2016. V. 9. P. 116. https://www.doi.org/10.1016/j.nme.2016.04.001
  9. Арутюнян З.Р., Огородникова О.В., Аксенова А.С., Гаспарян Ю.М., Ефимов В.С., Харьков М.М., Казиев А.В., Волков Н.В. // Поверхность. Рентген. cинхротр. нейтрон. исслед. 2020. Т. 12. № 12. С. 21. https://www.doi.org/10.31857/S1028096020120067
  10. Wang K., Doerner R.P., Baldwin M.J., Meyer F.W., Bannister M.E., Darbal A., Stroud R., Parish C.M. // Sci. Rep. 2017. V. 7. № 42315. P. 1. https://www.doi.org/10.1038/srep42315
  11. Kozushkina A., Pavlov S.I., Voronin A.V., Sokolov R.V., Levin A.A. // J. Phys.: Conf. Ser. 2020. V. 1697. P. 01234. https://www.doi.org/10.1088/1742-6596/1697/1/012134
  12. Herashchenko S.S., Girka O.I., Surovitskiy S.V., Makhlai V.A., Malykhin S.V., Myroshnyk M.O., Bizyukov I.O., Aksenov N.N., Borisova S.S., Bizyukov O.A., Garkusha I.E. // Nucl. Instr. Meth. B. 2019. V. 440. P. 82. https://www.doi.org/10.1016/j.nimb.2018.12.010
  13. Tokitani M., Miyamoto M., Masuzaki S., Hatano Y., Lee S.E., Oya Y., Otsuka T., Oyaidzu M., Kurotaki H., Suzuki T., Hamaguchi D., Hayashi T., Asakura N., Widdowson A., Jachmich S., Rubel M. // Phys. Scr. 2020. V. 2020. № T171. P. 014010. https://www.doi.org/10.1088/1402-4896/ab3d09
  14. Zhao C., Chen Y., Song J., Mei X., Pan Q., Zhang R., Yang L., Zhao F., Li J., Wang D. // Plasma Phys. Control. Fusion. 2023. V. 65. № 1. P. 015012. https://www.doi.org/10.1088/1361-6587/aca4f6
  15. Guo W., Wang S., Xu K., Zhu Y., Wang X.-X., Cheng L., Yuan Y., Fu E., Guo L., De Temmerman G., Lu G.-H. // Phys. Scr. 2020. V. 2020. № T171. 014004. https://www.doi.org/10.1088/1402-4896/ab36d8
  16. Gago M., Kreter A., Unterberg B., Wirtz M. // Phys. Scr. 2020. V. 2020. № T171. P. 014007. https://www.doi.org/10.1088/1402-4896/ab3bd9
  17. Kengesbekov A., Rakhdilov B., Satbaeva Z. Investigation of Microstructure and Mechanical Properties of Tungsten Irradiated by Helium Plasma. Preprint 2023111205. 2023. https://www.doi.org/10.20944/preprints202311.1205.v1
  18. Khan A., de Temmerman G., Kajita S., Greuner H., Balden M., Hunger K., Ohno N., Hwangbo D., Tomita Y., Tokitani M., Nagata D., Yajima M. // Phys. Scr. 2020. № T171. P. 014050. https://www.doi.org/10.1088/1402-4896/ab52c6
  19. Гусев В.К., Голант В.Е., Гусаков Е.З., Дьяченко В.В., Ирзак М.А., Минаев В.Б., Мухин Е.Е., Новохацкий А.Н., Подушникова К.А., Раздобарин Г.Т., Сахаров Н.В., Трегубова Е.Н., Узлов В.С., Щербинин О.Н., Беляков В.А., Кавин А.А., Косцов Ю.А., Кузьмин Е.Г., Сойкин В.Ф., Кузнецов Е.А., Ягнов В.А. // ЖТФ. 1999. Т. 69. № 9. С. 58.
  20. DIFFRAC.EVA. (2024) Software for the analysis of 1D and 2D X-ray datasets including visualization, data reduction, phase identification and quantification, statistical evaluation. Bruker AXS. Karlsruhe. Germany. https://www.bruker.com/ru/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.htm. Cited 5 Juni 2024
  21. International Centre for Diffraction Data (ICDD). Powder Diffraction File-2 (2014) Newton Square, PA, USA. https://www.icdd.com/. Cited 5 Juni 2024
  22. Maunders C., Etheridge J., Wright N., Whitfield H.J. // Acta. Crystallogr. B. 2005. V. 61. № 1. 154. https://www.doi.org/10.1107/S0108768105001667
  23. Terlan B., Levin A.A., Börrnert F., Simon F., Oschatz M., Schmidt M., Cardoso-Gil R., Lorenz T., Baburin I.A., Joswig J.-O., Eychmüller A. // Chem. Mater. 2015. V. 27. № 14. P. 5106. https://www.doi.org/10.1021/acs.chemmater.5b01
  24. Terlan B., Levin A.A., Börrnert F., Zeisner J., Kataev V., Schmidt M., Eychmüller A. // Eur. J. Inorg. Chem. 2016. V. 6. № 21. P. 3460. https://www.doi.org/10.1002/ejic.201600315
  25. Langford J.I., Cernik R.J., Louer D. // J. Appl. Crystallogr. 1991. V. 24. № 5. P. 913. https://www.doi.org/10.1107/S0021889891004375
  26. Levin A.A. Program SizeCr for calculation of the microstructure parameters from X-ray diffraction data. 2022. https://www.doi.org/10.13140/RG.2.2.15922.89280
  27. Rehani B.R., Joshi P.B., Lad K.N., Pratap A. // Indian J. Pure Appl. Phys. 2006. V. 44. № 2. P. 157.
  28. Scherrer P. // Nachr. Kӧnigl. Ges. Wiss. Gӧttingen. 1918. B. 26. S. 98.
  29. Stokes A.R., Wilson A.J.C. // Proc. Phys. Soc. London. 1944. V. 56. № 3. P. 174. https://www.doi.org/10.1088/0959-5309/56/3/303
  30. Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. P. 210. https://www.doi.org/10.1107/S1600576718000183
  31. Berger H. // X-ray Spectrom. 1986. V. 15. № 4. P. 241. https://www.doi.org/10.1002/xrs.1300150405
  32. Pitschke W., Hermann H., Mattern N. // Powder Diffr. 1993. V. 8. № 2, P. 74. https://www.doi.org/10.1017/S0885715600017875
  33. Rietveld H.M. // Z. Kristallogr. 2010. B. 225. № 12. S. 545. https://www.doi.org/10.1524/zkri.2010.1356
  34. Dubrovinsky L.S., Saxena S.K. // Phys. Chem. Miner. 1997. V. 24. № 8. P. 547. https://www.doi.org/10.1007/s002690050070
  35. Dollase W.A. // J. Appl. Crystallogr. 1986. V. 19. № 4. P. 267. https://www.doi.org/10.1107/S0021889886089458
  36. Järvinen M. // J. Appl. Crystallogr. 1993. V. 26. № 4. P. 525. https://www.doi.org/10.1107/S0021889893001219
  37. Cheary R.W., Coelho A.A. // J. Appl. Crystallogr. 1992. V. 25. № 2. P. 109. https://www.doi.org/10.1107/S0021889891010804
  38. Balzar D., Voigt-function model in diffraction line-broadening analysis. // Defect and Microstructure Analysis by Diffraction. / Ed. Snyder R.L., Fiala J., Bunge H.J. Oxford: IUCr, Oxford Uni. Press, 1999. P. 94.
  39. Balashova E., Levin A.A., Fokin A., Redkov A., Krichevtsov B. // Crystals. 2021. V. 11. № 11. P. 1278. https://www.doi.org/10.3390/cryst11111278
  40. Bérar J.-F., Lelann P.J. // J. Appl. Crystallogr. 1991. V. 24. № 1. P. 1. https://www.doi.org/10.1107/S0021889890008391
  41. Andreev Yu.G. // J. Appl. Crystallogr. 1994. V. 27. № 2. P. 288. https://www.doi.org/10.1107/S002188989300891X
  42. Levin A.A. Program RietESD for correction of estimated standard deviations obtained in Rietveld-refinement programs. 2022. https://www.doi.org/10.13140/RG.2.2.10562.04800
  43. Narykova M.V., Levin A.A., Prasolov N.D., Lihachev A.I., Kardashev B.K., Kadomtsev A.G., Panfilov A.G., Sokolov R.V., Brunkov P.N., Sultanov M.M., Kuryanov V.N., Tyshkevich V.N. // Crystals. 2022. V. 12. № 2. P. 166. https://www.doi.org/10.3390/cryst12020166
  44. Hill R.J., Fischer R.X. // J. Appl. Crystallogr. 1990. V. 23. № 5. P. 462. https://www.doi.org/10.1107/S0021889890006094
  45. Pecharsky V.K., Zavalij P.Y. Preferred orientation. // Fundamentals of Powder Diffraction and Structural Characterization of Materials. 2nd edition. New York, USA: Springer Science+Business Media LLC, 2009. P. 194.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Appearance of the W260-5 plate obtained with a digital camera. The grid division value is 1 mm.

Download (201KB)
3. Fig. 2. SEM images of the surface of Wini (a), W260-20 (b) and W50-20 (c) tungsten samples.

Download (685KB)
4. Fig. 3. EMF spectra of tungsten samples W260-20 (a) and W50-20 (b).

Download (156KB)
5. Fig. 4. Plots of Y (X) dependences plotted by WHP (a) and SSP (b) methods for the W260(1) phase of sample W260-10 based on the results of X-ray diffraction measurements: X = Kstrain sin (θB)2 / (FWHMcorrcos (θB)), Y = FWHMcorrcos (θB) in the case of WHP; X = KScherrerFWHMcorrdcos (θB)/λ, Y = (FWHMcorrdcos (θB) / λ)2 in the case of SSP; λ = 0.1540598 nm is the wavelength of CuKα1 emission; d is the interplanar distance corresponding to a reflex with a Bragg angle of 2θB; FWHMcorr is its FWHM corrected for instrumental broadening. Shown are regression approximation straight lines Y = A + BX, where A = 0.001, B = 2.93(55) × 10-7 on (a) and A = 1.02(20) × 10-6, B = 0.0077(8) 1/nm on (b).

Download (121KB)
6. Fig. 5. Graphical results of comparison between the Rietveld modelling result and the experimental X-ray diffraction pattern for Wini (a), W260-20 (b) and W50-20 (c) samples. The Miller indices hkl of the W phase reflections are indicated. As an example, insets show the contributions of different W phases to the observed reflection profile with Miller indices 112 (phase contributions are shown summed with the background contribution). Iexp, Icalc and Idiff = Iexp - Icalc are the intensities of the measured signal and the result of the modelled X-ray diffraction pattern intensity and difference intensity, respectively. In Fig. 5b symbols show the tabular (according to [21]) positions of the strongest in intensity observed reflections of impurity compounds W8O21, W10O29, Fe2O3, and Fe3O4, to which weak reflections not related to W are referred.

Download (320KB)
7. Fig. 6. Parameter a of the cubic unit cell of phases W (a, b); average crystallite size D (c, d); absolute value of the average microstrain εs in them (e, f) as a function of the number of irradiation cycles of samples W260 (a, c, e) and W50 (b, d, f). The values of all parameters of the structure and morphology of the material were obtained by refinement using the Rietveld method. For comparison, the dashed horizontal line in (a, b) shows the value of the parameter a of the cubic unit cell W, according to PDF-2 (a = 3.1648 Å).

Download (321KB)

Copyright (c) 2025 Russian Academy of Sciences