Structural evolution of nanoscale ferroelectric Hf0.5Zr0.5O2 layers as a result of their cyclic electrical stimulation
- 作者: Lev L.L.1, Konashuk A.S.2, Khakimov R.R.1, Chernikova A.G.1, Markeev A.М.1, Lebedev A.M.3, Nazin V.G.3, Chumakov R.G.3, Zenkevich A.V.1
-
隶属关系:
- Moscow Institute of Physics and Technology
- Institute of Physics, St. Petersburg State University
- Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”
- 期: 编号 4 (2025)
- 页面: 3-10
- 栏目: Articles
- URL: https://genescells.com/1028-0960/article/view/689122
- DOI: https://doi.org/10.31857/S1028096025040011
- EDN: https://elibrary.ru/FBOYZB
- ID: 689122
如何引用文章
详细
Despite the large number of already published articles on the topic of ferroelectric properties of Hf0.5Zr0.5O2 (HZO), this material still attracts enormous attention of the scientific community due to the prospects for creating competitive non-volatile HZO-based memory devices compatible with modern silicon technology. Among the difficulties on the way to creating industrial technology for such devices is the instability of the residual polarization of the ferroelectric during multiple switching by an external electric field. In particular, at the initial stages of such “cycling”, as a rule, a significant increase in residual polarization is observed (the so-called “wake-up” effect), and then, after a certain number of cycles, its decrease (the so-called “fatigue” effect). The question of what processes lead to such instability remains debatable. Using the previously developed methodology for analyzing the phase composition of ultrathin HZO layers by the NEXAFS synchrotron radiation method, it is shown that in capacitors based on TiN/HZO/TiN structures, the “wake-up” effect observed during the first 105 switching cycles is explained by an increase in the relative content of the polar orthorhombic phase in HZO due to a decrease in the content of the “parasitic” tetragonal phase. The obtained results confirm the electric field-stimulated structural phase transition in films as one of the mechanisms explaining the evolution of the functional properties of ferroelectric memory elements based on HZO throughout their service life.
全文:

作者简介
L. Lev
Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: lev.ll@mipt.ru
俄罗斯联邦, Dolgoprudny, Moscow oblast
A. Konashuk
Institute of Physics, St. Petersburg State University
Email: lev.ll@mipt.ru
俄罗斯联邦, St. Petersburg
R. Khakimov
Moscow Institute of Physics and Technology
Email: lev.ll@mipt.ru
俄罗斯联邦, Dolgoprudny, Moscow oblast
A. Chernikova
Moscow Institute of Physics and Technology
Email: lev.ll@mipt.ru
俄罗斯联邦, Dolgoprudny, Moscow oblast
A. Markeev
Moscow Institute of Physics and Technology
Email: lev.ll@mipt.ru
俄罗斯联邦, Dolgoprudny, Moscow oblast
A. Lebedev
Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”
Email: lev.ll@mipt.ru
俄罗斯联邦, Moscow
V. Nazin
Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”
Email: lev.ll@mipt.ru
俄罗斯联邦, Moscow
R. Chumakov
Kurchatov Complex for Synchrotron and Neutron Investigations, National Research Center “Kurchatov Institute”
Email: lev.ll@mipt.ru
俄罗斯联邦, Moscow
A. Zenkevich
Moscow Institute of Physics and Technology
Email: lev.ll@mipt.ru
俄罗斯联邦, Dolgoprudny, Moscow oblast
参考
- Robertson J. // Rep. Progress Phys. 2005. V. 69. P. 327. https://doi.org/10.1088/0034-4885/69/2/R02
- Kim S. K., Lee S. W., Han J. H., Lee B., Han S., Hwang C. S. // Adv. Funct. Mater. 2010. V 20. P. 2989. https://doi.org/10.1002/adfm.201000599
- Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. // Appl. Phys. Lett. 2011. V. 99. P. 102903. https://doi.org/10.1063/1.3634052
- Mueller S., Mueller J., Singh A., Riedel S., Sundqvist J., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2012. V. 22. P. 2412. https://doi.org/10.1002/adfm.201103119
- Chernikova A.G., Kuzmichev D.S., Negrov D.V., Kozodaev M.G., Polyakov S.N., Markeev A.M. // Appl. Phys. Lett. 2016. V. 108. P. 242905. https://doi.org/10.1063/1.4953787
- Hoffmann M., Schroeder U., Schenk T., Shimizu T., Funakubo H., Sakata O., Pohl D., Drescher M., Adelmann C., Materlik R., Kersch A., Mikolajick T. // J. Appl. Phys. 2015. V. 118. P. 072006. https://doi.org/10.1063/1.4927805
- Müller J., Schröder U., Böscke T. S., Müller I., Böttger U., Wilde L., Sundqvist J., Lemberger M., Kücher P., Mikolajick T., Frey L. // J. Appl. Phys. 2011. V. 110. P. 114113. https://doi.org/10.1063/1.3667205
- Schroeder U., Yurchuk E., Müller J., Martin D., Schenk T., Polakowski P., Adelmann C., Popovici M.I., Kalinin S.V., Mikolajick T. // Jpn. J. Appl. Phys. 2014. V. 53. P. 08LE02. https://doi.org/10.7567/JJAP.53.08LE02
- Müller J., Böscke T.S., Schröder U., Mueller S., Bräuhaus D., Böttger U., Frey L., Mikolajick T. // Nano Lett. 2012. V. 12. P. 4318. https://doi.org/10.1021/nl302049k
- Hyuk Park M., Joon Kim H., Jin Kim Y., Lee W., Moon T., Seong Hwang C. // Appl. Phys. Lett. 2013. V. 102. P. 242905. https://doi.org/10.1063/1.4811483
- Chernikova A., Kozodaev M., Markeev A., Negrov D., Spiridonov M., Zarubin S., Bak O., Buragohain P., Lu H., Suvorova E., Gruverman A., Zenkevich A. // ACS Appl. Mater. Interfaces. 2016. V. 11. P. 7232. https://doi.org/10.1021/acsami.5b11653
- Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482
- Zarubin S., Suvorova E., Spiridonov M., Negrov D., Chernikova A., Markeev A., Zenkevich A. // Appl. Phys. Lett. 2016. V. 109. P. 192903. https://doi.org/10.1063/1.4966219
- Hwang C.S. // Adv. Electron. Mater. 2015. V. one. P. 1400056. https://doi.org/10.1002/aelm.201400056
- Kim S. K., Popovici M. // MRS Bull. 2018. V. 43. P. 334. https://doi.org/10.1557/mrs.2018.95
- Pešić M., Fengler F.P.G., Larcher L., Padovani A., Schenk T., Grimley E.D., Sang X., LeBeau J.M., Slesazeck S., Schroeder U. and Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
- Hamouda W., Pancotti A., Lubin C., Tortech L., Richter C., Mikolajick T., Schroeder U., Barrett N. // J. Appl. Phys. 2020. V. 127. P. 064105. https://doi.org/10.1063/1.5128502
- Chouprik A., Negrov D., Tsymbal E., Zenkevich A. // Nanoscale. 2021. V. 13. P. 11635. https://doi.org/10.1039/D1NR01260F
- Koroleva A.A., Chernikova A.G., Zarubin S.S., Korostylev E.V., Khakimov R.R., Zhuk M.Yu., Markeev A.M. // ACS Omega. 2022. V. seven. № 50. P. 47084. https://doi.org/10.1021/acsomega.2c06237
- Colla E.L., Taylor D.V., Tagantsev A.K., Setter N. // Appl. Phys. Lett. 1998. V. 72. № 19. P. 2478. https://doi.org/10.1063/1.121386
- Stöhr J. NEXAFS Spectroscopy. Vol. 25. Springer Berlin Heidelberg, 1992.
- Filatova E.O., Sokolov A.A. // J. Synchrotron Radiat. 2018. V. 25. P. 232. https://doi.org/10.1107/S1600577517016253
- Filatova E.O., Sokolov A.A., Kozhevnikov I.V., Taracheva E.Y., Grunsky O.S., Schaefers F., Braun W. // J. Phys. Condens. Matter. 2009. V. 21. P. 185012. https://doi.org/10.1088/0953-8984/21/18/185012
- Dmitriyeva A.V., Zarubin S.S., Konashuk A.S., Kasatikov S.A., Popov V.V., Zenkevich A.V. // J. Appl. Phys. 2023. V. 133. P. 054103. https://doi.org/10.1063/5.0131893
- Cheema S.S., Kwon D., Shanker N., dos Reis R., Hsu S.-L., Xiao J., Zhang H., Wagner R., Datar A., McCarter M.R., Serrao C.R., Yadav A.K., Karbasian G., Hsu C.-H., Tan A.J., Wang L.-C., Thakare V., Zhang X., Mehta A., Karapetrova E., Chopdekar R.V, Shafer P., Arenholz E., Hu C., Proksch R., Ramesh R., Ciston J., Salahuddin S. // Nature. 2020. V. 580. P. 478. https://doi.org/10.1038/s41586-020-2208-x
- Kozodaev M.G., Chernikova A.G., Korostylev E.V., Park M.H., Khakimov R.R., Hwang C.S., Markeev A.M. // 2019. J. Appl. Phys. V. 125. P. 034101. https://doi.org/10.1063/1.5050700
- Lebedev A.M., Menshikov K.A., Nazin V.G., Stankevich V.G., Tsetlin M.B., Chumakov R.G. // J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2021. V. 15. P. 1039. https://doi.org/10.1134/S1027451021050335
- Henke B.L., Gullikson E.M., Davis J.C. // Atomic Data and Nuclear Data Tables. 1993. V. 54. № 2. P. 181. https://doi.org/10.1006/adnd.1993.1013
- Vasić R., Consiglio S., Clark R. D., Tapily K., Sallis S., Chen B., Newby, Jr. D., Medikonda M., Muthinti G.R., Bersch E., Jordan-Sweet J., Lavoie C., Leusink G.J., Diebold A.C. // J. Appl. Phys. V. 2013. 113. P. 234101. https://doi.org/10.1063/1.4811446
- Jain A., Ong S. P., Hautier G., Chen W., Davidson Richards W., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., Persson K.A. // APL Mater. 2013. V. 1. P. 011002. https://doi.org/10.1063/1.4812323
- Cho D.-Y., Jung H.-S., Hwang C. S. // 2010. Phys. Rev. B. V. 82. P. 094104. https://doi.org/10.1103/PhysRevB.82.094104
- Martin D., Müller J., Schenk T., Arruda T.M., Kumar A., Strelcov E., Yurchuk E., Müller S., Pohl D., Schröder U., Kalinin S.V., Mikolajick T. // Adv. Mater. 2014. V. 26. P. 8198. https://doi.org/10.1002/adma.201403115
- Lederer M., Abdulazhanov S., Olivo R., Lehninger D., Kämpfe T., Seidel K., Eng L. M. // Sci. Rep. 2021. V. 11. P. 22266. https://doi.org/10.1038/s41598-021-01724-2
- Lomenzo P.D., Takmeel Q., Zhou C., Fancher C.M., Lambers E., Rudawski N.G., Jones J.L., Moghaddam S., Nishida T. // J. Appl. Phys. 2015. V. 117. P. 134105. https://doi.org/10.1063/1.4916715
- Kim H.J., Park M.H., Kim Y.J., Lee Y.H., Moon T., Kim K.D., Hyun S.D., Hwang C.S. // Nanoscale. 2016. V. 8. P. 1383. https://doi.org/10.1039/C5NR05339K
- Grimley E.D., Schenk T., Sang X., Pešić M., Schroeder U., Mikolajick T., LeBeau J.M. // Adv. Electron. Mater. 2016. V. 2. P. 1600173. https://doi.org/10.1002/aelm.201600173
- Pešić M., Fengler F.P.G., Larcher L., Padovani A., Schenk T., Grimley E.D., Sang X., LeBeau J.M., Slesazeck S., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
- Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482
补充文件
