Structural analysis of Brazilian graphite by X-ray diffraction, scanning electron microscopy and thermogravimetric analysis with simultaneous differential scanning calorimetry

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The results on X-ray analysis of Brazilian graphite sample are presented. During diffraction pattern indexing and qualitative X-ray phase analysis, it has been found that Brazilian graphite contains three phases of carbon, two of which belong to hexagonal graphite (α-graphite) and one to rhombohedral graphite (β-graphite), which is confirmed by simultaneous thermal analysis. The unit cell parameters of each phase have been determined and refined. Calculations of conditional phase concentrations in the sample by the least squares method have shown that the conditional concentration of 47-1155 standard (JCPDS database) in the sample is 66%, 1-646 standard is 21.3%, and 2-456 standard is 12.6%. Using scanning electron microscopy, the sample surface topology has been studied, which is a flake structure with a large number of particles, the size of which does not exceed 5 μm. The quantitative characteristics of the short-range order have been determined, which have shown that the structure of Brazilian graphite is close to hexagonal graphite within the error limits.

Texto integral

Acesso é fechado

Sobre autores

M. Soloninkina

Petrozavodsk State University; Karelian Research Center RAS

Autor responsável pela correspondência
Email: mas31393@yandex.ru
Rússia, Petrozavodsk; Petrozavodsk

D. Loginov

Petrozavodsk State University

Email: mas31393@yandex.ru
Rússia, Petrozavodsk

S. Moshkalev

Centre for Semiconductor Components and Nanotechnology (CCS Nano), University of Campinas (UNICAMP

Email: mas31393@yandex.ru
Brasil, Campinas, 13083-870

N. Rozhkova

Karelian Research Center RAS

Email: mas31393@yandex.ru
Rússia, Petrozavodsk

Bibliografia

  1. Burchell T.D., Pavlov T.R. // Comprehensive Nuclear Materials. Elsevier, 2020. Р. 355. https://doi.org/10.1016/B978-0-12-803581-8.11777-1
  2. Петров Е.И., Тетенькин Д.Д. Государственный доклад “О состоянии и использовании минерально-сырьевых ресурсов Российской Федерации в 2021 году”. Москва, 2022. https://gd2021.data-geo.ru/
  3. Кононов В.А. // Новые огнеупоры. 2021. Т. 1. № 3. С. 3. https://doi.org/10.17073/1683-4518-2021-3-3-10
  4. Логинов Д.В., Лешок А.В., Солонинкина М.В. // Порошковая металлургия. Республиканский межведомственный сб. науч. трудов. Минск, 2022. С. 73. https://elibrary.ru/download/elibrary_50242694_ 49073922.pdf
  5. Чайка Е.Ф., Марясев И.Г., Платонов А.А. // Новые огнеупоры. 2017. № 10. С. 9. https://newogneup.elpub.ru/jour/article/viewFile/690/ 681
  6. Kashcheev I.D., Zemlyanoi K.G., Ust′yantsev V.M., Pomortsev S.A. // Refract. Ind. Ceram. 2016. V. 56. P. 577. https://doi.org/10.1007/s11148-016-9891-z
  7. Фоменко С.М., Толендиулы С., Акишев А., Рахым Н.Т., Бекджанова М.Т. // Горение и плазмохимия. 2023. Т. 21. № 4. С. 237. https://doi.org/10.18321/cpc21(4)237-247
  8. Бабаханова З.А., Рузимова Ш.У., Тургунов Ш.Х. // Universum: технические науки. 2017. № 2. С. 71. https://elibrary.ru/download/elibrary_28408315_ 36215798.pdf
  9. Алимухамедов Ш.П., Юнусов С.З., Турсунов Н.К., Туракулов М.Р. // Механика и технология. 2023. № 2 (11). С. 179. https://cyberleninka.ru/article/n/sovershenstvovanie-tehnologii-polucheniya-sinteticheskogo-chuguna-v-induktionnoy-tigelnoy-pechi
  10. Дядин Ю.А. // Соросовский образовательный журнал. 2000. Т. 6. № 10. С. 43. http://www.priroda.ru/upload/iblock/59f/file.pdf
  11. Чернявей A.Н. // Химия твердого топлива. 2008. № 2. С. 42. https://elibrary.ru/download/elibrary_10331698_ 99306161.pdf
  12. Asenbauer J., Eisenmann T., Kuenzel M., Kazzazi A., Chen Z., Bresser D. // Sustainable En. Fuels. 2020. Т. 4. № 11. С. 5387. https://doi.org/10.1039/D0SE00175A
  13. Колобов М.Ю., Братков И.В., Гущина Т.В., Чагин О.В. // Современные наукоемкие технологии. Региональное приложение. 2023. № 2 (74). С. 79. https://doi.org/10.6060/snt.20237402.0008
  14. Duan S., Wu X., Wang Y., Feng J., Hou S., Huang Z., Shen K., Chen Y., Liu H., Kang F. // New Carbon Mater. 2023. V. 38. № 1. P. 73. https://doi.org/10.1016/S1872-5805(23)60717-6
  15. Поддубный А.Н. // Литье и металлургия. 2023. № 4. С. 33. https://doi.org/10.21122/1683-6065-2023-4-33-42
  16. Петрунин В.В., Маров И.В., Скородумов С.Е., Виленский О.Ю., Бажутов Н.Л., Голубева Д.А. // Атомная энергия. 2020. Т. 129. № 1. С. 43. https://j-atomicenergy.ru/index.php/ae/article/view/3202
  17. Jin H., Zhou K., Ji Z., Chen Y., Lu L., Ren Y., Xu C., Duan S., Li J., Hou S.E. // Friction. 2020. V. 8. P. 684. https://doi.org/10.1007/s40544-019-0293-3
  18. Лазарчик М.В., Лешок А.В., Роговой А.Н. // Матер. 14 Междунар. науч.-практ. конф. “Новые материалы и технологии: порошковая металлургия, композиционные материалы, защитные покрытия, сварка”. Минск, 9–11 сентября 2020. С. 230. https://elibrary.ru/download/elibrary_44155788_ 49962441.pdf
  19. Болсуновская Т.А., Ефимочкин И.Ю., Севостьянов Н.В., Бурковская Н.П. // Тр. ВИАМ. 2018. № 7 (67). С. 69. https://doi.org/10.18577/2307-6046-2018-0-7-69-77
  20. Duan S., Wu X., Zeng K., Tao T., Huang Z., Fang M., Liu Y., Min X. // Carbon. 2020. V. 159. P. 527. https://doi.org/10.1016/j.carbon.2019.12.091
  21. Hasan H.M., Abdoon F.M. // Tamjeed J. Healthcare Eng. Sci. Technol. 2023. V. 1. № 2. P. 44. https://doi.org/10.59785/tjhest.v1i2.43
  22. Преснова Г.В., Булко Т.В., Шумянцева В.В., Рубцова М.Ю. // Вестн. Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 5. С. 468. https://doi.org/10.55959/MSU0579-9384-2-2023-64-5-468-477
  23. Куприянова В.А., Бирюкова Н.В. // Матер. XXXV Междунар. науч.-практ. конф. “Современное образование: актуальные вопросы, достижения и инновации”. Пенза, 5 мая 2020. С. 122. https://elibrary.ru/download/elibrary_42782354_ 77281319.pdf
  24. Vieira F., Cisneros I., Rosa N.G., Trindade G.M., Mohallem N.D.S. // Carbon. 2006. V. 44. № 12. P. 2590. https://doi.org/10.1016/j.carbon.2006.05.043
  25. Miranda D.A., de Oliveira Chaves A., Campello M.S., de Moraes Ramos S.L.L. // Int. Geol. Rev. 2019. V. 61. № 15. С. 1864. https://doi.org/10.1080/00206814.2018.1564073
  26. Rezende L.C., Chaves A.O., Ramos S.L.L.M. // Brazilian J. Geol. 2021. V. 51. P. e20200083. https://doi.org/10.1590/2317-4889202120200083
  27. Nacional de Graphite. https://www.grafite.com (Дата обращения: 19.01.2024)
  28. Alaferdov A.V., Gholamipour-Shirazi A., Canesqui M.A., Danilov Y.A., Moshkalev S.A. // Carbon. 2014. V. 69. P. 525. https://doi.org/10.1016/j.carbon.2013.12.062
  29. Alaferdov A.V., Savu R., Canesqui M.A., Kopelevich Y.V., da Silva R.R., Rozhkova N.N., Pavlov D.A., Usov Y., de Trindade G.M., Moshkalev S.A. // Carbon. 2018. V. 129. P. 826. https://doi.org/10.1016/j.carbon.2017.12.100
  30. Алешина Л.А., Фофанов А.Д. Рентгеноструктурный анализ аморфных материалов: учеб. пособие. Петрозаводск: Изд-во ПГУ, 1987. 88 с.
  31. Кузьмичева Г.М. Теория плотнейших шаровых упаковок и плотных шаровых кладок. М.: МИТХТ, 2000. 43 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffraction pattern of Brazilian graphite.

Baixar (23KB)
3. Fig. 2. Indexed diffraction pattern of a sample of Brazilian graphite, phases: rhombohedral (x); hexagonal1 (y); hexagonal2 (z).

Baixar (34KB)
4. Fig. 3. Thermograms (TG (1) and DSC (2) curves) of a sample of Brazilian graphite (in air).

Baixar (141KB)
5. Fig. 4. Surface topology of the studied sample.

Baixar (12KB)
6. Fig. 5. Experimental (1) and fitted (2) distribution curves of paired functions D(r) for a sample of Brazilian graphite.

Baixar (21KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025