Device for determining the contour of the visible area of optical elements (contourograph)

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This work presents a device for determining the contour of the visible area of optical elements (contourograph), designed for precise correlation of the coordinates of the visible area of the optical part with its physical dimensions. The developed device ensures the determination of the coordinates of the processed surface with an accuracy of ± 2.5 μm, which is necessary for high-precision ion beam processing. The contourograph is capable of outlining objects of arbitrary shape, including curved ones, as well as the contours of objects oriented at arbitrary angles relative to the linear motorized translators of the device. The high accuracy of determining the position of the processed surface directly affects the quality of ion beam processing, which allows for significant improvement in the characteristics of the optical element and, consequently, the optical system as a whole. During the work, the contourograph was successfully applied in the manufacturing of a substrate for the element of a two-mirror monochromator for station 1-1 “Microfocus” of the 4th generation synchrotron “SKIF” (Novosibirsk, Russia), demonstrating its practical significance and efficiency. By using the contourograph, an optical surface with the required characteristics was achieved, with the root mean square deviation of the surface reduced by 25 times — from the initial 25.7 nm to 1.0 nm.

Full Text

Restricted Access

About the authors

А. I. Artuhov

Institute for Physics of Microstructures RAS

Email: chernyshev@ipmras.ru

Институт физики микроструктур РАН

Russian Federation, Nizhny Novgorod

E. I. Glushkov

Institute for Physics of Microstructures RAS

Email: chernyshev@ipmras.ru

Институт физики микроструктур РАН

Russian Federation, Nizhny Novgorod

M. S. Mikhailenko

Institute for Physics of Microstructures RAS

Email: chernyshev@ipmras.ru

Институт физики микроструктур РАН

Russian Federation, Nizhny Novgorod

A. E. Pestov

Institute for Physics of Microstructures RAS

Email: chernyshev@ipmras.ru

Институт физики микроструктур РАН

Russian Federation, Nizhny Novgorod

E. V. Petrakov

Institute for Physics of Microstructures RAS

Email: chernyshev@ipmras.ru

Институт физики микроструктур РАН

Russian Federation, Nizhny Novgorod

V. N. Polkovnikov

Institute for Physics of Microstructures RAS

Email: chernyshev@ipmras.ru

Институт физики микроструктур РАН

Russian Federation, Nizhny Novgorod

А. K. Chernyshev

Institute for Physics of Microstructures RAS

Author for correspondence.
Email: chernyshev@ipmras.ru

Институт физики микроструктур РАН

Russian Federation, Nizhny Novgorod

N. I. Chkhalo

Institute for Physics of Microstructures RAS

Email: chernyshev@ipmras.ru

Институт физики микроструктур РАН

Russian Federation, Nizhny Novgorod

R. A. Shaposhnikov

Institute for Physics of Microstructures RAS

Email: chernyshev@ipmras.ru

Институт физики микроструктур РАН

Russian Federation, Nizhny Novgorod

References

  1. Hoffman C., Giallorenzi T.G., Slater L.B. // Appl. Opt. 2015. V. 54. N. 31. P. F268. https://www.doi.org/10.1364/AO.54.00F268
  2. Ахсахалян А.Д., Клюенков Е.Б., Лопатин А.Я., Лучин В.И., Нечай А.Н., Пестов А.Е., Полковников В.Н., Салащенко Н.Н., Свечников М.В., Торопов М.Н., Цыбин Н.Н., Чхало Н.И., Щербаков А.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 1. С. 5. https://www.doi.org/10.7868/s0207352817010048
  3. Wagner Ch., Harned N. // Nature Photon. 2010. V. 4. N. 1. P. 24. https://www.doi.org/10.1038/nphoton.2009.251
  4. Born M., Wolf E. // Principles of Optics (Cambridge University). 1999. Sec. 9.3. P. 528.
  5. Chkhalo N.I., Kaskov I.A., Malyshev I.V., Mikhaylenko M.S., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Toropov M.N., Zabrodin I.G. // Precis. Eng. 2017. V. 48. P. 338. https://www.doi.org/10.1016/j.precisioneng.2017.01.004
  6. Wilson S.R., Reicher D.W., McNeil J.R. // Proc. SPIE. 1988. V. 966. P. 74. https://www.doi.org/10.1117/12.948051
  7. Weiser M. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. № 8–9. P. 1390. https://www.doi.org/10.1016/j.nimb.2009.01.051
  8. Wilson S.R., McNeil JR. // Proc. SPIE. 1987. V. 818. P. 320. https://www.doi.org/10.1117/12.978903
  9. Mikhailenko M.S., Pestov A.E., Chkhalo N.I., Goncharov L.A., Chernyshev A.K., Zabrodin I.G., Kaskov I.A., Krainov P.V., Astakhov D.I., Medvedev V.V. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 1010. P. 165554. https://www.doi.org/10.1016/j.nima.2021.165554
  10. Lu Y., Xie X., Zhou L., Dai Z., Chen G. // Appl. Opt. 2017. V. 56. № 2. P. 260. https://www.doi.org/10.1364/AO.56.000260
  11. Bauer J., Ulitschka M., Pietag F., Arnold T. // J. Astron. Telesc. Instrum. Syst. 2018. V. 4. № 4. P. 046003. https://www.doi.org/10.1117/1.JATIS.4.4.046003
  12. Petrakov E.V., Glushkov E.I., Chernyshev A.K., Chkhalo N.I. // Opt. Eng. 2024. V. 63. № 11. P. 114104. https://doi.org/10.1117/1.OE.63.11.114104
  13. Chernyshev A., Chkhalo N., Malyshev I., Mikhailenko M., Pestov A., Pleshkov R., Smertin R., Svechnikov M., Toropov M. // Precis. Eng. 2021. V. 69. P. 29. https://www.doi.org/10.1016/j.precisioneng.2021.01.006
  14. Xie L., Tian Y., Shi F., Guo S., Zhou G. // J. Mater. Process. Technol. 2024. V. 327. P. 118341. https://www.doi.org/10.1016/j.jmatprotec.2024. 118341
  15. Антюшин Е.С., Ахсахалян А.А., Зуев С.Ю., Лопатин А.Я., Малышев И.В., Нечай А.Н., Перекалов А.А., Пестов А.Е., Салащенко Н.Н., Торопов М.Н., Уласевич Б.А., Цыбин Н.Н., Чхало Н.И., Соловьев А.А., Стародубцев М.В. // ЖТФ. 2022. Т. 92. № 8. С. 1202. https://www.doi.org/10.21883/JTF.2022.08.52784.80-22
  16. Chkhalo N.I., Malyshev I.V., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Toropov M.N., Soloviev A.A. // Appl. Opt. 2016. V. 55. P. 619. https://www.doi.org/10.1364/AO.55.000619
  17. Kuzin S., Bogachev S., Pertsov A., Loboda I., Chervinsky V., Chkhalo N., Lopatin A., Malyshev I., Pestov A., Pleshkov R., Polkovnikov V., Toropov M., Tsybin N., Zuev S. // Appl. Opt. 2023. V. 62. P. 8462. https://www.doi.org/10.1364/AO.501437
  18. Артюхов А.И., Морозов С.С., Петрова Д.В., Чхало Н.И., Шапошников Р.А. // ЖТФ. 2024. Т. 94. № 8. С. 1295. https://www.doi.org/10.61011/JTF.2024.08.58557.165-24
  19. Apache NetBeans (2024) The Apache Software Foundation. https://netbeans.apache.org/front/main/index.html
  20. Java programming language (2024) Oracle Corporation, USA. https://www.oracle.com/java/
  21. Swing Package (2024) Oracle Corporation, USA. https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/package-summary.html
  22. Glushkov E.I., Malyshev I.V., Petrakov E.V., Chkhalo N.I., Khomyakov Yu.V., Rakshun Ya.V., Chernov V.A., Dolbnya I.P. // J. Surf. Invest: X-ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. P. 233. https://www.doi.org/10.1134/S1027451023070133
  23. Chernov V.A., Bataev I.A., Rakshun Y.V., Khomyakov Y.V., Gorbachev M.V., Trebushinin A.E., Chkhalo N.I., Krasnorutskiy D.A., Naumkin V.S., Sklyarov A.N., Mezentsev N.A., Korsunsky A.M., Dolbnya I.P. // Rev. Sci. Instrum. 2023. V. 94 P. 013305. https://www.doi.org/10.1063/5.0103481
  24. Забродин И.Г., Зорина М.В., Каськов И.А., Малышев И.В., Михайленко М.С., Пестов А.Е., Салащенко Н.Н., Чернышев А.К., Чхало Н.И. // ЖТФ. 2020. Т. 90. № 11. С. 1922. https://www.doi.org/10.21883/JTF.2020.11.49985.112-20

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Contour graph diagram (a): 1 — diode laser; 2 — focusing lens; 3 — semitransparent mirror; 4 — focusing lens; 5 — highly sensitive high-speed video camera; 6 — diaphragm; 7 — optical element under study. External view of the device with the optical element under study installed (b).

Download (52KB)
3. Fig. 2. Image of laser beam on the camera.

Download (52KB)
4. Fig. 3. Map of the surface shape deviation of the silicon monochromator before processing.

Download (15KB)
5. Fig. 4. Map of surface shape deviation from plane after six iterations of ion treatment (a). Change in the RMS objective function during sample treatment (b); the dashed line marks the required objective function level.

Download (32KB)
6. Fig. 5. Comparison of the estimated and measured contour of the surface of the processed optical part. The calculated and found positions of the center of the optical surface are marked with asterisks, the distance between them is 0.41 mm.

Download (19KB)
7. Fig. 6. Map of the deviation of the surface shape from the plane after nine iterations of ion processing (a). Change in the RMS target function during processing (b); the dashed line marks the required level of the target function; the arrow shows the moment when the position of the sample center was refined using a contour graph.

Download (29KB)

Copyright (c) 2025 Russian Academy of Sciences