Device for determining the contour of the visible area of optical elements (contourograph)
- Authors: Artuhov А.I.1, Glushkov E.I.1, Mikhailenko M.S.1, Pestov A.E.1, Petrakov E.V.1, Polkovnikov V.N.1, Chernyshev А.K.1, Chkhalo N.I.1, Shaposhnikov R.A.1
-
Affiliations:
- Institute for Physics of Microstructures RAS
- Issue: No 4 (2025)
- Pages: 28-36
- Section: Articles
- URL: https://genescells.com/1028-0960/article/view/689145
- DOI: https://doi.org/10.31857/S1028096025040048
- EDN: https://elibrary.ru/FBVUXP
- ID: 689145
Cite item
Abstract
This work presents a device for determining the contour of the visible area of optical elements (contourograph), designed for precise correlation of the coordinates of the visible area of the optical part with its physical dimensions. The developed device ensures the determination of the coordinates of the processed surface with an accuracy of ± 2.5 μm, which is necessary for high-precision ion beam processing. The contourograph is capable of outlining objects of arbitrary shape, including curved ones, as well as the contours of objects oriented at arbitrary angles relative to the linear motorized translators of the device. The high accuracy of determining the position of the processed surface directly affects the quality of ion beam processing, which allows for significant improvement in the characteristics of the optical element and, consequently, the optical system as a whole. During the work, the contourograph was successfully applied in the manufacturing of a substrate for the element of a two-mirror monochromator for station 1-1 “Microfocus” of the 4th generation synchrotron “SKIF” (Novosibirsk, Russia), demonstrating its practical significance and efficiency. By using the contourograph, an optical surface with the required characteristics was achieved, with the root mean square deviation of the surface reduced by 25 times — from the initial 25.7 nm to 1.0 nm.
Full Text

About the authors
А. I. Artuhov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
Russian Federation, Nizhny NovgorodE. I. Glushkov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
Russian Federation, Nizhny NovgorodM. S. Mikhailenko
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
Russian Federation, Nizhny NovgorodA. E. Pestov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
Russian Federation, Nizhny NovgorodE. V. Petrakov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
Russian Federation, Nizhny NovgorodV. N. Polkovnikov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
Russian Federation, Nizhny NovgorodА. K. Chernyshev
Institute for Physics of Microstructures RAS
Author for correspondence.
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
Russian Federation, Nizhny NovgorodN. I. Chkhalo
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
Russian Federation, Nizhny NovgorodR. A. Shaposhnikov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
Russian Federation, Nizhny NovgorodReferences
- Hoffman C., Giallorenzi T.G., Slater L.B. // Appl. Opt. 2015. V. 54. N. 31. P. F268. https://www.doi.org/10.1364/AO.54.00F268
- Ахсахалян А.Д., Клюенков Е.Б., Лопатин А.Я., Лучин В.И., Нечай А.Н., Пестов А.Е., Полковников В.Н., Салащенко Н.Н., Свечников М.В., Торопов М.Н., Цыбин Н.Н., Чхало Н.И., Щербаков А.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 1. С. 5. https://www.doi.org/10.7868/s0207352817010048
- Wagner Ch., Harned N. // Nature Photon. 2010. V. 4. N. 1. P. 24. https://www.doi.org/10.1038/nphoton.2009.251
- Born M., Wolf E. // Principles of Optics (Cambridge University). 1999. Sec. 9.3. P. 528.
- Chkhalo N.I., Kaskov I.A., Malyshev I.V., Mikhaylenko M.S., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Toropov M.N., Zabrodin I.G. // Precis. Eng. 2017. V. 48. P. 338. https://www.doi.org/10.1016/j.precisioneng.2017.01.004
- Wilson S.R., Reicher D.W., McNeil J.R. // Proc. SPIE. 1988. V. 966. P. 74. https://www.doi.org/10.1117/12.948051
- Weiser M. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. № 8–9. P. 1390. https://www.doi.org/10.1016/j.nimb.2009.01.051
- Wilson S.R., McNeil JR. // Proc. SPIE. 1987. V. 818. P. 320. https://www.doi.org/10.1117/12.978903
- Mikhailenko M.S., Pestov A.E., Chkhalo N.I., Goncharov L.A., Chernyshev A.K., Zabrodin I.G., Kaskov I.A., Krainov P.V., Astakhov D.I., Medvedev V.V. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 1010. P. 165554. https://www.doi.org/10.1016/j.nima.2021.165554
- Lu Y., Xie X., Zhou L., Dai Z., Chen G. // Appl. Opt. 2017. V. 56. № 2. P. 260. https://www.doi.org/10.1364/AO.56.000260
- Bauer J., Ulitschka M., Pietag F., Arnold T. // J. Astron. Telesc. Instrum. Syst. 2018. V. 4. № 4. P. 046003. https://www.doi.org/10.1117/1.JATIS.4.4.046003
- Petrakov E.V., Glushkov E.I., Chernyshev A.K., Chkhalo N.I. // Opt. Eng. 2024. V. 63. № 11. P. 114104. https://doi.org/10.1117/1.OE.63.11.114104
- Chernyshev A., Chkhalo N., Malyshev I., Mikhailenko M., Pestov A., Pleshkov R., Smertin R., Svechnikov M., Toropov M. // Precis. Eng. 2021. V. 69. P. 29. https://www.doi.org/10.1016/j.precisioneng.2021.01.006
- Xie L., Tian Y., Shi F., Guo S., Zhou G. // J. Mater. Process. Technol. 2024. V. 327. P. 118341. https://www.doi.org/10.1016/j.jmatprotec.2024. 118341
- Антюшин Е.С., Ахсахалян А.А., Зуев С.Ю., Лопатин А.Я., Малышев И.В., Нечай А.Н., Перекалов А.А., Пестов А.Е., Салащенко Н.Н., Торопов М.Н., Уласевич Б.А., Цыбин Н.Н., Чхало Н.И., Соловьев А.А., Стародубцев М.В. // ЖТФ. 2022. Т. 92. № 8. С. 1202. https://www.doi.org/10.21883/JTF.2022.08.52784.80-22
- Chkhalo N.I., Malyshev I.V., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Toropov M.N., Soloviev A.A. // Appl. Opt. 2016. V. 55. P. 619. https://www.doi.org/10.1364/AO.55.000619
- Kuzin S., Bogachev S., Pertsov A., Loboda I., Chervinsky V., Chkhalo N., Lopatin A., Malyshev I., Pestov A., Pleshkov R., Polkovnikov V., Toropov M., Tsybin N., Zuev S. // Appl. Opt. 2023. V. 62. P. 8462. https://www.doi.org/10.1364/AO.501437
- Артюхов А.И., Морозов С.С., Петрова Д.В., Чхало Н.И., Шапошников Р.А. // ЖТФ. 2024. Т. 94. № 8. С. 1295. https://www.doi.org/10.61011/JTF.2024.08.58557.165-24
- Apache NetBeans (2024) The Apache Software Foundation. https://netbeans.apache.org/front/main/index.html
- Java programming language (2024) Oracle Corporation, USA. https://www.oracle.com/java/
- Swing Package (2024) Oracle Corporation, USA. https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/package-summary.html
- Glushkov E.I., Malyshev I.V., Petrakov E.V., Chkhalo N.I., Khomyakov Yu.V., Rakshun Ya.V., Chernov V.A., Dolbnya I.P. // J. Surf. Invest: X-ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. P. 233. https://www.doi.org/10.1134/S1027451023070133
- Chernov V.A., Bataev I.A., Rakshun Y.V., Khomyakov Y.V., Gorbachev M.V., Trebushinin A.E., Chkhalo N.I., Krasnorutskiy D.A., Naumkin V.S., Sklyarov A.N., Mezentsev N.A., Korsunsky A.M., Dolbnya I.P. // Rev. Sci. Instrum. 2023. V. 94 P. 013305. https://www.doi.org/10.1063/5.0103481
- Забродин И.Г., Зорина М.В., Каськов И.А., Малышев И.В., Михайленко М.С., Пестов А.Е., Салащенко Н.Н., Чернышев А.К., Чхало Н.И. // ЖТФ. 2020. Т. 90. № 11. С. 1922. https://www.doi.org/10.21883/JTF.2020.11.49985.112-20
Supplementary files
