Two channels of minority charge carriers recombination in a homogeneous semiconductor target

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The process of of non-stationary diffusion of nonequilibrium minority charge carriers is considered by mathematical modeling methods, which is realized after the termination of the effect of an electronic probe on a homogeneous semiconductor target. For a low-energy (up to 10 keV) electron probe, a mathematical model of two-dimensional diffusion of charge carriers in a homogeneous semiconductor material is proposed, taking into account the dynamics of changes in target temperature after the termination of electron irradiation of the probe. When calculating the dependence on the coordinates of the density of nonequilibrium minority charge carriers generated by an electron probe, a mathematical model of energy loss by primary electrons was used, taking into account the separate contribution of electrons that experienced small-angle scattering and absorbed into the target and the contribution of backscattered electrons that experienced a small number of scattering at large angles and left the target. The differential equation of thermal conductivity is solved approximately using the projection method. The quantitative description of the temperature dependences of the effective lifetime and the diffusion coefficient of the generated charge carriers was carried out taking into account the available results of experimental electron probe studies of cathodoluminescence of homogeneous monocrystalline gallium nitride. Model calculations have been performed for the diffusion of excitons in homogeneous monocrystalline gallium nitride in the presence of two independent recombination channels of nonequilibrium charge carriers.

全文:

受限制的访问

作者简介

Е. Seregina

Bauman Moscow State Technical University (National Research University)

编辑信件的主要联系方式.
Email: evfs@yandex.ru
俄罗斯联邦, Kaluga

M. Stepovich

Tsiolkovsky Kaluga State University

Email: evfs@yandex.ru
俄罗斯联邦, Kaluga

M. Filippov

Kurnakov Institute of General and Inorganic Chemistry RAS

Email: evfs@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Stepovich M.A., Turtin D.V., Seregina E.V., Polyakov A.N. // J. Phys.: Conf. Ser. 2019. V. 1203. P. 012095. https://www.doi.org/10.1088/1742-6596/1203/1/012095
  2. Серегина Е.В., Степович М.А., Макаренков А.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 1. С. 93. https://www.doi.org/10.7868/S0207352818010158
  3. Серегина Е.В., Степович М.А., Филиппов М.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 3. C. 74. https://www.doi.org/10.31857/S1028096023030159
  4. Амрастанов А.Н., Серегина Е.В., Степович М.А., Филиппов М.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 8. С. 48. https://www.doi.org/10.1134/S0207352818080036.
  5. Амрастанов А.Н., Серегина Е.В., Степович М.А. // Известия РАН. Серия физическая. 2019. Т. 83. № 11. С. 1455. https://www.doi.org/10.1134/S0367676519110024
  6. Noltemeyer M., Bertram F., Hempel T., Bastek B., Polyakov A., Christen J., Brandt M., Lorenz M., Grundmann M. // J. Mater. Res. 2012. V. 27. № 17. P. 2225.
  7. Поляков А.Н., Noltemeyer M., Hempel T., Christen J., Степович М.А. // Прикладная физика. 2012. № 6. С. 41.
  8. Поляков А.Н., Noltemeyer M., Hempel T., Christen J., Степович М.А. // Прикладная физика. 2015. № 4. C. 11.
  9. Поляков А.Н., Noltemeyer M., Christen J., Степович М.А., Туртин Д.В. // Перспективные материалы. 2016. № 2. C. 74.
  10. Поляков А.Н., Noltemeyer M., Hempel T., Christen J., Степович М.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2012. № 11. С. 35.
  11. Polyakov A.N., Smirnova A.N., Stepovich M.A., Turtin D.V. // Lobachevskii Journal of Mathematics. 2018. V. 39. № 2. P. 259.
  12. Turtin D.V., Stepovich M.A., Kalmanovich V.V., Seregina E.V. // J. Math. Sci. 2021. V. 255. № 6. P. 773. https://www.doi.org/10.1007/s10958-021-05414-2
  13. Серегина Е.В., Степович М.А., Макаренков А.М. // Итоги науки и техники. Сер. Соврем. мат. и ее прил. Тематический обзор. 2021. Т. 200. № 1(11). С. 105. https://www.doi.org/10.36535/0233-6723-2021-200-105-114
  14. Серегина Е.В., Степович М.А., Филиппов М.Н. // Итоги науки и техники. Сер. Соврем. мат. и ее прил. Тематический обзор. 2024. Т. 233. С. 89. https://www.doi.org/10.36535/2782-4438-2024-233-89-98
  15. Ханефт А.В., Долгачев В.А., Дугинов Е.В., Иванов Г.А. // Вестник КемГУ. 2013. Т. 3. № 3 (55). C. 31.
  16. Seregina E.V., Polyakov A.N., Stepovich M.A. // J. Phys.: Conf. Ser. 2018. P. 012032.
  17. Поляков А.Н., Noltemeyer M., Hempel T., Christen J., Степович М.А. // Известия РАН. Серия физическая. 2012. Т. 76. № 9. С. 1082.
  18. Properties of group III nitrides. / Ed. Edgar J. H. London: INSPEC. 1994. 302 p.
  19. Properties, processing and application of GaN and related semiconductors / Ed. Edgar J.H. London: INSPEC. 1999. 830 p.
  20. Novikov Yu.A., Rakov A.V., Filippov M.N. // Measurement Techniques. 2004. V. 47. № 5. P. 438. https://www.doi.org/10.1023/B:METE.0000038108. 67246.68

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the temperature of a single-crystal GaN target on time at the point of incidence of the electron probe (at ).

下载 (11KB)
3. Fig. 2. Experimental temperature [5] (a) and calculated time (b) dependences of the exciton lifetime τ in a single-crystal GaN sample in a model with one exciton recombination channel.

下载 (23KB)
4. Fig. 3. Experimental temperature [5] (a) and calculated time (b) dependences of the exciton diffusion coefficient D in a single-crystal GaN sample in a model with one exciton recombination channel.

下载 (25KB)
5. Fig. 4. The concentration of excitons c(r, t), calculated using model (1), (2) for one channel of exciton recombination, in the case of constant electrophysical parameters of the target (a) and calculated using model (5), (2) of two-channel exciton recombination, in the case of a variable effective lifetime of excitons (b) at τ1 = τ and τ2 = 10τ at τ = 236 ps and the coefficient α = 0.1.

下载 (38KB)
6. Fig. 5. Section of surfaces (1) and (2) by plane r = 0 at τ1 = τ and τ2 = 10τ at τ = 236 ps and coefficient α = 0.1.

下载 (10KB)
7. Fig. 6. Section of surface (1) at τ1 = τ and τ2 = 10τ, τ = 236 ps, coefficient α = 0.1 and surface calculated using the model with variable electrophysical parameters (9), (2), (2) plane r = 0.

下载 (9KB)
8. Fig. 7. Section of surface (1) at τ1 = τ and τ2 = 15τ, τ = 236 ps, coefficient α = 0.1 and surface calculated using the model with variable electrophysical parameters (9), (2), (2) plane r = 0.

下载 (10KB)

版权所有 © Russian Academy of Sciences, 2025