The role of the electrostatic field on the appearance of a narrow and dense layer of metal nanoparticles near the surface of a metal-containing dielectric after electron irradiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The work proposes a mechanism for the formation of a layered structure of metal nanoparticles in dielectrics irradiated with fast electrons a model is discussed. On the example of silver-containing glass, in which it is possible to accumulate silver nanoparticles under the surface in two layers: wide — at the depth of embedded primary electrons (~3 μm for 30 keV) and, extremely narrow ~0.1 µm –closer to the surface (at a depth of ~0.5 μm). Both the first and second layers are due to strong electrostatic fields arising in the regions of embedded electrons (space negative charge) and positive space charge formed by true secondary electron emission. The process of diffusion of polarized silver atoms in the specified inhomogeneous electric field with a secondary electron emission coefficient greater than one is considered. In the presented model of the distribution of spatial charge and electric field in silver-containing glass irradiated with fast electrons, an equilibrium profile of the concentration of silver atoms in the near-surface layer is obtained. It is shown that in the formed electric fields it is possible to form a structure with areas of enrichment and depletion of the specified impurity. The calculated values of the equilibrium concentrations of silver atoms at the surface may exceed the corresponding volume values by several times.

Full Text

Restricted Access

About the authors

O. А. Podsvirov

Peter the Grate St. Petersburg Polytechnic University

Author for correspondence.
Email: olegpodsvir@mail.ru
Russian Federation, St. Petersburg

D. A. Sokolova

Peter the Grate St. Petersburg Polytechnic University

Email: olegpodsvir@mail.ru
Russian Federation, St. Petersburg

V. B. Bondarenko

Peter the Grate St. Petersburg Polytechnic University

Email: olegpodsvir@mail.ru
Russian Federation, St. Petersburg

References

  1. Bigot J.Y., Halte V., Merle J.C., Daunois A. // Chem. Phys. 2000. V. 251. P. 181. https://www.doi.org/10.1016/s0301-0104(99)00298-0
  2. Jimenez J.A., Lysenko S., Liu H. // J. Appl. Phys. 2008. V. 104. № 5. P. 054313. https://www.doi.org/10.1063/1.2976171
  3. Lipovskii A.A., Melehin V.G., Petrov M.I., Svirko Yu.P., Zhurikhina V.V. // J. Appl. Phys. 2011. V. 109. № 1. P. 011101. https://www.doi.org/10.1063/1.3511746
  4. Berger A. // J. Non-Cryst. Solids. 1992. V. 151. P. 88. https://www.doi.org/10.1016/0022-3093(92)90013-A
  5. De Marchi G., Caccavale F., Gonella F., Mattei G., Mazzoldi P., Battaglin G., Quaranta A. // Appl. Phys. A. 1996. V. 63. P. 403. https://www.doi.org/10.1007/BF01567335
  6. Kaganovskii Yu., Lipovskii A., Rosenbluh M., Zhurikhina V. // J. Non-Cryst. Solids. 2007 V. 353. P. 2263. https://www.doi.org/10.1016/j.jnoncrysol.2007.03.003
  7. Игнатьев А.И., Нащекин А.В., Неведомский В.М., Подсвиров О.А., Сидоров А.И., Соловьев А.П., Усов О.А. // ЖТФ. 2011. Т. 81. Вып. 5. С. 75. https://www.doi.org/10.1134/S1063784211050148
  8. Никоноров Н.В., Сидоров А.И., Цехомский В.А., Нащекин А.В., Усов О.А., Подсвиров О.А., Поплевкин С.В. // Письма в ЖТФ. 2009. Т. 35. Вып. 7. С. 35. https://www.doi.org/10.1134/S1063785009040063
  9. Touzin M., Goeuriot D., Guerret-Piecourt C., Juve D., Treheux D. and Fitting H.-J. // J. Appl. Phys. 2006. V. 99. P. 114110. https://www.doi.org/10.1063/1.2201851
  10. Громов В.В. Электрический заряд в облученных материалах. М.: Энергоиздат, 1982. 112 с.
  11. Melchinger A., Hofmann S. // J. Appl. Phys. 1995. V. 78. P. 6224. https://www.doi.org/10.1063/1.360569
  12. Cazaux J. // J. Appl. Phys. 2001. V. 89. P. 8265. https://www.doi.org/10.1063/1.1368867
  13. Rau E.I., Tatarintsev A.A. // J. Appl. Phys. 2022. V. 132. P. 184102. https://www.doi.org/10.1063/5.0104628
  14. Drouin D., Couture R.A., Joly D., Tastet X., Aimez V., Gauvin R. // Scanning. 2007. V. 29. № 3. P. 92. https://www.doi.org/10.1002/sca.20000
  15. Бронштейн И.М., Фрайман Б.С. Вторичная электронная эмиссия. М.: Наука, 1969. 408 с.
  16. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971, 1108 с.
  17. Тамм И.Е. Основы теории электричества. М.: Наука, 1976, 616 с.
  18. Радциг А.А., Смирнов Б.М. Параметры атомов и атомных ионов: справочник. М.: Энергоатомиздат, 1986, 344 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. TEM images of silver nanoparticle layers in glass after electron irradiation and heat treatment at 500°C for 6 h: general view of the cross-section of the sample (a), the arrow indicates the glass surface; the area of the thin layer of nanoparticles (b); the area of the wide layer of nanoparticles (c); the inset is an enlarged image of an individual silver nanoparticle.

Download (48KB)
3. Fig. 1. TEM images of silver nanoparticle layers in glass after electron irradiation and heat treatment at 500°C for 6 h: general view of the cross-section of the sample (a), the arrow indicates the glass surface; the area of the thin layer of nanoparticles (b); the area of the wide layer of nanoparticles (c); the inset is an enlarged image of an individual silver nanoparticle.

Download (13KB)
4. Fig. 3. Dependences on the distance from the sample surface: projections of the electric field strength on the x-axis (a); potential energy of the dipole in the electric field induced by electrons implanted in the sample as a result of irradiation (b); equilibrium relative distribution of induced dipoles (c).

Download (18KB)

Copyright (c) 2025 Russian Academy of Sciences