Analysis of angle resolved x-ray photoelectron emission spectra of highly oriented pyrolytic graphite

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The interest in Van-der-Waals structures is associated with their unique physical and chemical properties and the prospects for technological applications. In this work, the object of study is highly oriented pyrolytic graphite as a model of such materials. The experimental results of measuring the spectra of angle resolved X-ray photoelectron spectroscopy are presented. The experiments were performed for detection angles of 0°, 60°, 80° and 85° from the surface normal, which made it possible to maximally localize the XPS signal generated by the upper layer of the highly oriented pyrolytic graphite. A technique for reconstructing the differential cross section of inelastic electron energy losses from experimental X-ray photoelectron spectroscopy spectra is presented. According to this technique, the differential cross section of inelastic electron scattering in the highly oriented pyrolytic graphite was reconstructed for each detection angle. The obtained cross sections are compared with those reconstructed for graphene with a different number of layers. The determining influence of collective plasmon electron energy losses on the formation of the energy loss spectrum in heterogeneous Van der Waals structures is indicated.

全文:

受限制的访问

作者简介

V. Afanas′ev

National Research University “MPEI”

编辑信件的主要联系方式.
Email: v.af@mail.ru
俄罗斯联邦, Moscow

L. Lobanova

National Research University “MPEI”

Email: v.af@mail.ru
俄罗斯联邦, Moscow

A. Eletskii

National Research University “MPEI”

Email: v.af@mail.ru
俄罗斯联邦, Moscow

K. Maslakov

Lomonosov Moscow State University

Email: v.af@mail.ru
俄罗斯联邦, Moscow

М. Semenov-Shefov

National Research University “MPEI”

Email: v.af@mail.ru
俄罗斯联邦, Moscow

G. Bocharov

National Research University “MPEI”

Email: v.af@mail.ru
俄罗斯联邦, Moscow

参考

  1. Geim A.K., Grigorieva I.V. // Nature. 2013. V. 499. P. 419. https://www.doi.org/10.1038/nature12385
  2. Novoselov K.S., Castro Neto A.H. // Phys. Scr. 2012. V. 2012. № T146. P. 014006. https://www.doi.org/10.1088/0031-8949/2012/T146/014006
  3. Barrett N., Krasovskii E.E., Themlin J.M., Strocov V.N. // Surf. Sci. 2004. V. 566–568. P. 532. https://www.doi.org/10.1016/j.susc.2004.05.104
  4. Werner W.S.M., Bellissimo A., Leber R., Ashraf A., Segui S. // Surf. Sci. 2015. V. 635. P. L1. https://www.doi.org/10.1016/j.susc.2014.12.016
  5. Werner W.S.M., Astašauskas V., Ziegler P., Bellissimo A., Stefani G., Linhart L., Libisch F. // Phys. Rev. Lett. 2020. V. 125. № 19. P. 196603. https://www.doi.org/10.1103/PhysRevLett.125.196603
  6. Taft E.A., Philip H.R. // Phys. Rev. 1965. V. 138. № 1A. https://www.doi.org/10.1103/PhysRev.138.A197
  7. Wallace P. // Phys. Rev. 1947. V. 71. № 9. P. 622. https://www.doi.org/10.1103/PhysRev.71.622
  8. Marinopoulos A.G., Reining L., Olevano V., Rubio A., Pichler T., Liu X., Knupfer M., Fink J. // Phys. Rev. Lett. 2002. V. 89. № 7. P. 076402. https://www.doi.org/10.1103/PhysRevLett.89.076402
  9. Papageorgiou N., Portail M., Layet J. M. // Surf. Sci. 2000. V. 454–456. P. 462. https://www.doi.org/10.1016/S0039-6028(00)00127-8
  10. Eberlein T., Bangert U., Nair R.R., Jones R., Gass M., Bleloch A.L., Novoselov K.S., Geim A., Briddon P.R. // Phys. Rev. B. 2008. V. 77. № 23. P. 233406. https://www.doi.org/10.1103/PhysRevB.77.233406
  11. Pauly N., Novák M., Tougaard S. // Surf. Interface Anal. 2013. V. 45. № 4. P. 811. https://www.doi.org/10.1002/sia.5167
  12. Tanuma S., Powell C., Penn D. // Surf. Interface Anal. 2011. V. 43. № 3. P. 689. https://www.doi.org/10.1002/sia.3522
  13. Hoffman S. Auger and X-Ray Photoelectron Spectroscopy in Materials Science. Berlin Heidelberg: Springer, 2012. 528 pp. https://doi.org/10.1007/978-3-642-27381-0
  14. NIST Electron Elastic-Scattering Cross-Section Database, Version 5.0. (2002) https://srdata.nist.gov/srd64/
  15. Salvat F., Jablonski A., Powell C.J. // Comput. Phys. Commun. 2005. V. 165. № 2. P. 157. https://www.doi.org/10.1016/j.cpc.2004.09.006
  16. Garcia-Molina R., Abril I., Denton C.D., Heredia-Avalos S. // Nucl. Instrum. Meth. B. 2006. V. 249. № 1–2. P. 6. https://www.doi.org/10.1016/j.nimb.2006.03.011
  17. Strehlow W.H., Cook E.L. // J. Phys. Chem. Ref. Data. 1973. V. 2. № 1. P. 163.
  18. Afanas′ev V.P., Bocharov G S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Y. // J. Phys.: Conf. Ser. 2018. V. 1121. P. 012001. https://www.doi.org/10.1088/1742-6596/1121/1/012001
  19. Afanas′ev V.P., Bocharov G.S., Eletskii A.V., Ridzel O.Yu., Kaplya P.S., Köppen M. // J. Vac. Sci. Technol. B. 2017. V. 35. № 4. P. 041804. https://www.doi.org/10.1116/1.4994788
  20. Afanas′ev V.P., Bocharov G.S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Yu. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 2. P. 366. https://www.doi.org/10.1134/S102745102002041X

补充文件

附件文件
动作
1. JATS XML
2. Рис. 1. Энергетические спектры характерных потерь энергии электронов, измеренные при прохождении электронов с энергией 100 кэВ через однослойный (1), двухслойный (2), пятислойный (3), десятислойный (4) графен [10].

下载 (30KB)
3. Рис. 2. Обзорный спектр RFES высокоориентированного пиролитического графита.

下载 (16KB)
4. Рис. 3. Экспериментальный спектр RFES в области пика углерода 1s высокоориентированного пиролитического графита при углах детектирования фотоэлектронов 0° (4), 60° (3), 80° (2) и 85° (1) относительно оси с структуры графита.

下载 (27KB)
5. Рис. 4. Дифференциальные сечения неупругого рассеяния электронов, восстановленные из экспериментальных данных [10] по методу (2) для однослойного (1), двухслойного (2), пятислойного (3) и десятислойного графена (4).

下载 (23KB)
6. Рис. 5. Дифференциальные сечения неупругого рассеяния электронов в высокоориентированном пиролитическом графите при углах регистрации фотоэлектронов 0° (4), 60° (3), 80° (2) и 85° (1), измеренные от нормали к плоскостям графена.

下载 (20KB)

版权所有 © Russian Academy of Sciences, 2025