Interpretation of X-Ray photoelectron spectra of Ge(111), GeO2/Ge(111), C60F18/Ge(111) samples using quantum chemical calculations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The valence band of photoelectron spectra of complex samples (multicomponent samples, samples with oxide films, molecules adsorbed on the surface) has a complex structure, which complicates the interpretation of the contributions of various sample components to the spectral structure. A method is considered for interpretation of valence band spectra as a result of calculating the density of electronic states for a physical volume using quantum chemistry — an atomic model that most fully characterizes the sample under study. The optimal position of atoms in a given physical volume of the computational model was found using the iterative Broyden–Fletcher–Goldfarb–Shanno numerical optimization method taking into account the spatial distribution of the potential obtained from quantum chemical calculation. The calculation was performed using code written in Python using the ASE and GPAW libraries (atomic simulation environment and grid-based projector-augmented wave) on the equipment of a supercomputer computing cluster. The data obtained by calculation were compared with the measured photoelectron spectra of various systems, such as Ge(111), GeO2/Ge(111), C60F18/Ge(111), and C60F18/GeO2/Ge(111). The analysis made it possible to determine the contributions of various atoms and bonds to the final photoelectron spectrum, estimate the thicknesses of individual layers, and determine the types of bonds between molecules and the substrate.

全文:

受限制的访问

作者简介

Е. Shramkov

National Research Centre “Kurchatov Institute”

编辑信件的主要联系方式.
Email: Egor@Shramkov.ru
俄罗斯联邦, Moscow

A. Andreev

National Research Centre “Kurchatov Institute”

Email: Egor@Shramkov.ru
俄罗斯联邦, Moscow

R. Chumakov

National Research Centre “Kurchatov Institute”

Email: Egor@Shramkov.ru
俄罗斯联邦, Moscow

V. Stankevich

National Research Centre “Kurchatov Institute”

Email: Egor@Shramkov.ru
俄罗斯联邦, Moscow

L. Sukhanov

National Research Centre “Kurchatov Institute”

Email: Egor@Shramkov.ru
俄罗斯联邦, Moscow

参考

  1. Электронная и ионная спектроскопия твердых тел / Ред. Фирменс Л. и др. М.: Мир, 1981. 468 с.
  2. Feibelman P.J., Eastman D.E. // Phys. Rev. B. 1974. V. 10. № 12. Р. 4932. https://doi.org/10.1103/PhysRevB.10.4932
  3. Preobrajenski A., Generalov A., Öhrwall G., Tchaplyguine M., Tarawneh H., Appelfeller S., Frampton E., Walsh N. // J. Synchrotron Radiat. 2023. V. 30. P. 831. https://doi.org/10.1107/S1600577523003429
  4. Eidhagen J., Larsson A., Preobrajenski A., Delblanc A., Lundgren E., Pan J. // J. Electrochem. Soc. 2023. V. 170. № 2. Р. 021506. https://doi.org/10.1149/1945-7111/acba4b
  5. Hryniewicz T., Rokosz K., Sandim H.R.Z. // Appl. Surf. Sci. 2012. V. 263. P. 704. https://doi.org/10.1016/j.apsusc.2012.09.060
  6. Wang Z., Carrière C., Seyeux A., Zanna S., Mercier D., Marcus P. // Appl. Surf. Sci. 2022. V. 576. P. 151836. https://doi.org/10.1016/j.apsusc.2021.151836
  7. Xiao X., Chang K., Xu K., Lou M., Wang L., Xue Q. // J. Mater. Sci. Technol. 2022. V. 167. P. 494. https://doi.org/10.1016/j.jmst.2023.05.042
  8. Лебедев А.М., Суханов Л.П., Бржезинская М., Меньшиков К.А., Свечников Н.Ю., Чумаков Р.Г., Станкевич В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 8. С. 30. https://doi.org/10.7868/s0207352817080042
  9. Mikoushkin V.M., Bryzgalov V.V., Nikonov S.Yu., Solonitsyna A.P., Marchenko D.E. // Физика и техника полупроводников. 2018. Т. 52. Вып. 5. С. 506. https://doi.org/10.21883/ftp.2018.05.45850.39
  10. Лебедев А.М., Меньшиков К.А., Назин В.Г., Станкевич В.Г., Цетлин М.Б., Чумаков Р.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 10. С. 44. https://doi.org/10.31857/S1028096021100125
  11. Larsen A.H., Mortensen J.J., Blomqvist J. et al. // J. Phys.: Condens. Matter. 2017. V. 29. P. 273002. https://doi.org/10.1088/1361-648X/aa680e
  12. Mortensen J.J., Larsen A.H., Kuisma M. et al. // J. Chem. Phys. 2024. V. 160. Iss. 9. P. 092503. https://doi.org/10.1063/5.0182685
  13. Larsen AH., Vanin M., Mortensen J.J., Thygesen K.S., Jacobsen K.W. // J. Phys.: Condens. Matter. 2009. V. 80. P. 195112. https://doi.org/10.1103/PhysRevB.80.195112
  14. Gandus G., Valli A., Passerone D., Stadler R. // J. Chem. Phys. 2020. V. 153. Iss. 19. P. 194103. https://doi.org/10.1063/5.0021821
  15. Maniopoulou A., Davidson E.R.M., Grau-Crespo R., Walsh A., Bush I.J., Catlow C.R.A., Woodley S.M. // Comput. Phys. Commun. 2012. V. 183. Iss. 8. P. 1696. https://doi.org/10.1016/j.cpc.2012.03.009
  16. Bairagi K., Bellec A., Chumakov R.G. et al. // Surf. Sci. 2015. V. 641. P. 248. https://doi.org/10.1016/j.susc.2015.05.020

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Change in the process of the calculation code operation depending on the selected basis set for Ge(111): 1 — dz, solution time 116 s, used memory 123 MB; 2 — dzp, 344 s, 227 MB; 3 — tzp, 395 s, 263 MB; 4 — tzdp, 400 s, 280 MB.

下载 (23KB)
3. Fig. 2. Comparison of photoelectron spectra obtained experimentally (1) and theoretically (2) for Ge(111), as well as projected densities of electron states for Ge4s (3), Ge4p (4); the arrangement of atoms in the calculated model is shown on the right.

下载 (34KB)
4. Fig. 3. Comparison of photoelectron spectra obtained experimentally (1) and theoretically (2) for GeO2/Ge(111), as well as projected densities of electron states for Ge4s (3), Ge4p (4), O2p (magnified fivefold) (5); the right shows the arrangement of atoms in the calculated model.

下载 (36KB)
5. Fig. 4. Experimental (1) and calculated (2, 7) photoelectron spectra and projected densities of electron states of the ground electron levels Ge4s (3), Ge4p (4), C2p (magnified 10 times) (5), F2p (magnified 100 times) (6, 8) for the C60F18/Ge(111) (1–6) and C60F18/GeO2/Ge(111) (8) systems, as well as local densities of electron states F2p for the F–Ge (9) and F–C (10) bonds; the arrangement of atoms in the calculated models is shown on the right.

下载 (56KB)

版权所有 © Russian Academy of Sciences, 2025