On optimal conditions for generation of terahertz surface plasmon-polaritons by the end-fire coupling technique

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The results of an experimental study of the generation of surface plasmon-polaritons in the terahertz range are presented. The end-fire coupling technique has been used for generation, when the beam is focused on the metal–dielectric interface. It has been found that at normal beam incidence, the efficiency of plasmon-polaritons generation is maximum, and the half-width of the dependence of the generation efficiency on the angle of radiation incidence in the sample plane is 6.0° ± 0.5°. It is shown that the generation efficiency has a maximum at a certain shift of the center of the incident beam relative to the metal–dielectric interface. The half-width of this maximum is 590 ± 50 μm, which is consistent with theory within the error limits.

全文:

受限制的访问

作者简介

P. Nikitin

Scientific and Technological Centre of Unique Instrumentation RAS

编辑信件的主要联系方式.
Email: nikitin.pavel.a@gmail.com
俄罗斯联邦, Moscow

V. Gerasimov

Novosibirsk State University; Budker Institute of Nuclear Physics SB RAS

Email: v.v.gerasimov3@gmail.com
俄罗斯联邦, Novosibirsk; Novosibirsk

A. Lemzyakov

Budker Institute of Nuclear Physics SB RAS; Shared Research Center “Siberian Ring Photon Source”, Boreskov Institute of Catalysis SB RAS

Email: nikitin.pavel.a@gmail.com
俄罗斯联邦, Novosibirsk; Novosibirsk

参考

  1. Maier S.A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007. 224 p. https://doi.org/10.1007/0-387-37825-1
  2. Liang Y., Koshelev K., Zhang F., Lin H., Lin S., Wu J., Jia B., Kivshar Y. // Nano Lett. 2020. V. 20. № 9. P. 6351. https://doi.org/10.1021/acs.nanolett.0c01752
  3. Peale R.E., Figueiredo P.N., Phelps J.R., Chan K.C., Abdolvand R., Smith E.M., Vangala S. // Infrared Phys. Tech. 2022. V. 125. P. 104253. https://doi.org/10.1016/j.infrared.2022.104253
  4. Gallerano G.P., Biedron S. // Proc. of the 2004 FEL Conf. 2004. P. 216. https://accelconf.web.cern.ch/f04/papers/FRBIS02/FRBIS02.PDF
  5. Lewis R.A. // J. Phys. D. 2019. V. 52. № 43. P. 433001. https://doi.org/10.1088/1361-6463/ab31d5
  6. Zhang X., Xu Q., Xia L., Li Y., Gu J., Tian Z., Ouyang C., Han J., Zhang W. // Adv. Photon. 2020. V. 2. № 1. P. 014001. https://doi.org/10.1117/1.AP.2.1.014001
  7. Begley D.L., Alexander R.W., Ward C.A., Miller R., Bell R.J. // Surf. Sci. 1979. V. 81. № 2. P. 245. https://doi.org/10.1016/0039-6028(79)90515-6
  8. Suarez I., Ferrando A., Marques-Hueso J., Diez A., Abargues R., Rodriguez-Canto P., Martinez-Pastor J. // Nanophotonics. 2017. V. 6. № 5. P. 1109. https://doi.org/10.1515/nanoph-2016-0166
  9. Koteles E.S., McNeill W.H. // Int. J. Infrared Millim. Waves. 1981. V. 2. P. 361. https://doi.org/10.1007/BF01007040
  10. Steijn K.W., Seymour R.J., Stegeman G.I. // Appl. Phys. Lett. 1986. V. 49. P. 1151. https://doi.org/10.1063/1.97450
  11. Huang W., Yang W., Yin Sh., Zhang W. // Results Phys. 2021. V. 31. P. 104985. https://doi.org/10.1016/j.rinp.2021.104985
  12. Korobko D.A., Zolotovskii I.O., Moiseev S.G., Kadochkin A.S., Svetukhin V.V. // J. Opt. 2021. V. 24. № 1. P. 015002. https://doi.org/10.1088/2040-8986/ac3c4f
  13. Ebadi S.M., Ortegren J. // OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF). 2020. P. NoTh3C.5. https://doi.org/10.1364/NOMA.2020.NoTh3C.5
  14. Sun W., He Q., Sun S., Zhou L. // Light Sci. Appl. 2016. V. 5. P. e16003. https://doi.org/10.1038/lsa.2016.3
  15. Mackay T.G., Faryad M. // Plasmonics. 2022. V. 17. P. 753. https://doi.org/10.1007/s11468-021-01568-6
  16. Vinogradov A.P., Dorofeenko A.V., Pukhov A.A., Lisyansky A.A. // Phys. Rev. B. 2018. V. 97. № 23. P. 235407. https://doi.org/10.1103/PhysRevB.97.235407
  17. Martl M., Darmo J., Unterrainer K., Gornik E. // J. Opt. Soc. Am. B. 2009 V. 26. № 3. P. 554. https://doi.org/10.1364/JOSAB.26.000554
  18. Farhat M., Guenneau S., Bagci H. // Phys. Rev. Lett. 2013. V. 111. № 23. P. 237404. https://doi.org/10.1103/PhysRevLett.111.237404
  19. Stegeman G.I., Wallis R.F., Maradudin A.A. // Opt. Lett. 1983. V. 8. № 7. P. 386. https://doi.org/10.1364/OL.8.000386
  20. Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A. // Photonics. 2023. V. 10. № 8. P. 917. https://doi.org/10.3390/photonics10080917
  21. Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A. Kotelnikov I.A. // Appl. Sci. 2023. V. 13. № 13. P. 7898. https://doi.org/10.3390/app13137898
  22. Gerasimov V.V., Knyazev B.A., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. // J. Opt. Soc. Am. B. 2016. V. 33. № 11. P. 2196. https://doi.org/10.1364/JOSAB.33.002196
  23. Kukotenko V.D., Gerasimov V.V. // Proc. SPIE. 2023. V. 12776. Р. 1277607. https://doi.org/10.1117/12.2687472
  24. Handbook of Optical Constants of Solids. Vol. 1. / Ed. Palik E.D. Cambridge, MA, USA: Academic Press, 2016. 824 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of generation of plasmon-polaritons by the edge diffraction method: a – side view; b – top view.

下载 (14KB)
3. Fig. 2. Theoretical dependence of the efficiency of generation of plasmon-polaritons in the THz range on the position of the central part of the incident radiation beam.

下载 (11KB)
4. Fig. 3. Schematic diagram of the experimental setup: 1 — THz radiation beam; 2 — flat mirror; 3 — cylindrical mirror; 4 — sample; 5 — screen; 6 — radiation receiver.

下载 (7KB)
5. Fig. 4. Experimental dependence of the efficiency of generation of plasmon-polaritons in the THz range on the position of the central part of the incident radiation beam.

下载 (14KB)
6. Fig. 5. Experimental dependence of the efficiency of generation of plasmon-polaritons in the THz range on the angle of incidence of the radiation beam.

下载 (14KB)

版权所有 © Russian Academy of Sciences, 2025