Change in the free volume in amorphous Al88Ni10Y2 alloy under plastic deformation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The surface morphology and structure of the amorphous Al88Ni10Y2 alloy subjected to deformation by multiple cold rolling were studied using X-ray diffraction and scanning electron microscopy. It was shown that during plastic deformation, steps are formed on the surface of the amorphous alloy due to the emergence of shear bands on the surface. It was found that aluminum crystals are formed in the deformed alloy. The steps on the surface of the deformed alloy were analyzed using the images obtained by the scanning electron microscopy method. It was shown that the length of the steps remains approximately the same when examining the surface of different areas of the deformed alloy. An assessment was made of the change in the fraction of free volume in the studied alloy during plastic deformation. The applied methodology made it possible to assess the difference in the density of undeformed and deformed alloys of different compositions using electron microscopic images. Determining the change in free volume content in amorphous alloys subjected to plastic deformation is a key factor in studying the ways of forming amorphous-nanocrystalline structures with improved mechanical properties.

Full Text

Restricted Access

About the authors

V. V. Chirkova

Yu.A. Osipyan Institute of Solid State Physics RAS

Author for correspondence.
Email: valyffkin@issp.ac.ru
Russian Federation, Chernogolovka

N. A. Volkov

Yu.A. Osipyan Institute of Solid State Physics RAS

Email: valyffkin@issp.ac.ru
Russian Federation, Chernogolovka

G. E. Abrosimova

Yu.A. Osipyan Institute of Solid State Physics RAS

Email: valyffkin@issp.ac.ru
Russian Federation, Chernogolovka

A. S. Aronin

Yu.A. Osipyan Institute of Solid State Physics RAS

Email: valyffkin@issp.ac.ru
Russian Federation, Chernogolovka

References

  1. Becker M., Kuball A., Ghavimi A., Adam B., Busch R., Gallino I., Balle F. // Materials. 2022. V. 15. № 21. P. 7673. https://www.doi.org/10.3390/ma15217673
  2. Gao M.H., Zhang S.D., Yang B.J., Qiu S., Wang H.W., Wang J.Q. // Appl. Surf. Sci. 2020. V. 530. P. 147211. https://www.doi.org/10.1016/j.apsusc.2020.147211
  3. Ming W., Guo X., Xu Y., Zhang G., Jiang Z., Li Y., Li X. // Ceram. Int. 2023. V. 49. № 2. P. 1585. https://www.doi.org/10.1016/j.ceramint.2022.10.349
  4. Meenuga S.R., Babu D.A., Majumdar B., Birru A.K., Guruvidyathri K., Raja M.M. // J. Magn. Magn. Mater. 2023. V. 584. P. 171087. https://www.doi.org/10.1016/j.jmmm.2023.171087
  5. Jin Y., Inoue A., Kong F.L., Zhu S.L., Al-Marzouki F., Greer A.L. // J. Alloys Compd. 2020. V. 832. P. 154997. https://www.doi.org/10.1016/j.jallcom.2020.154997
  6. Zhang C.Y., Zhu Z.W., Li S.T., Wang Y.Y., Li Z.K., Li H., Yuan G., Zhang H.F. // J. Mater. Sci. 2024. V. 181. P. 115. https://www.doi.org/10.1016/j.jmst.2023.09.022
  7. Люборский Ф.Е. Аморфные металлические сплавы. М.: Металлургия, 1987. 584 с.
  8. Greer A.L. // Science. 1995. V. 267. № 5206. P. 1947. https://www.doi.org/10.1126/science.267.5206.1947
  9. Turnbull D., Cohen M.H. // J. Chem. Phys. 1970. V. 52. № 6. P. 3038. https://www.doi.org/10.1063/1.1673434
  10. Astanin V., Gunderov D., Titov V., Asfandiyarov R. // Metals. 2022. V. 12. № 8. P. 1278. https://www.doi.org/10.3390/met12081278
  11. Chen Z.Q., Huang L., Wang F., Huang P., Lu T.J., Xu K.W. // Mater. Des. 2016. V. 109. P. 179. https://www.doi.org/10.1016/j.matdes.2016.07.069
  12. Doolittle A.K. // J. Appl. Phys. 1951. V. 22. № 12. P. 1471. https://www.doi.org/10.1063/1.1699894
  13. Ramachandrarao P., Cantor B., Cahn R.W. // J. Non. Cryst. Solids. 1977. V. 24. № 1. P. 109. https://www.doi.org/10.1016/0022-3093(77)90065-5
  14. Soshiroda T., Koiwa M., Masumoto T. // J. Non. Cryst. Solids. 1976. V. 22. № 1. P. 173. https://www.doi.org/10.1016/0022-3093(76)90017-X
  15. Lou Y., Liu X., Yang X., Ge Y., Zhao D., Wang H., Zhang L.-C., Liu Z. // Intermetallics. 2020. V. 118. P. 106687. https://www.doi.org/10.1016/j.intermet.2019.106687
  16. Spaepen F. // Acta Metall. 1977. V. 25. № 4. P. 407. https://www.doi.org/10.1016/0001-6160(77)90232-2
  17. Argon A.S. // Acta Metall. 1979. V. 27. № 1. P. 47. https://www.doi.org/10.1016/0001-6160(79)90055-5
  18. Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74. № 4. P. 71. https://www.doi.org/10.1016/j.mser.2013.04.001
  19. Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://www.doi.org/10.1016/j.ultramic.2014.03.006
  20. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater. 2017. V. 140. P. 206. https://www.doi.org/10.1016/j.actamat.2017.08.032
  21. Чиркова В.В., Абросимова Г.Е., Першина Е.А., Волков Н.А., Аронин А.С. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2023. № 11. С. 16. https://www.doi.org/10.31857/S1028096023110080
  22. Tsai A.-P., Kamiyama T., Kawamura Y., Inoue A., Masumoto T. // Acta Mater. 1997. V. 45. № 4. P. 1477. https://www.doi.org/10.1016/S1359-6454(96)00268-6
  23. Anghelus A., Avettand-Fènoël M.-N., Cordier C., Taillard R. // J. Alloys Compd. 2015. V. 651. V. 454. https://www.doi.org/10.1016/j.jallcom.2015.08.102
  24. Park J.S., Lim H.K., Kim J.-H., Chang H.J., Kim W.T., Kim D.H., Fleury E. // J. Non-Cryst. Solids. 2005. V. 351. № 24-26. P. 2142. https://www.doi.org/10.1016/J.JNONCRYSOL. 2005.04.070
  25. Hebert R.J., Perepezko J.H., Rösner H., Wilde G. // Beilstein J. Nanotechnol. 2016. V. 7. № 1. P. 1428. https://www.doi.org/10.3762/bjnano.7.134
  26. Аронин А.С., Волков Н.А., Першина Е.А. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2024. № 1. C. 33. https://www.doi.org/10.31857/S1028096024010054
  27. Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://www.doi.org/10.1016/j.mechmat.2017.07.007
  28. Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Wang J.T. // Metals. 2020. V. 10. № 11. P. 1433. https://www.doi.org/10.3390/met10111433
  29. Абросимова Г.Е., Астанин В.В., Волков Н.А., Гундеров Д.В., Постновa Е.Ю., Аронин А.С. // ФММ. 2023. T. 124. № 7. C. 622. https://www.doi.org/10.31857/S0015323023600521
  30. He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D.H., Eckert J., Greer A.L. // Sci. Reports. 2016. V. 6. P. 25832. https://www.doi.org/10.1038/srep25832

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of studying the surface of a deformed alloy using scanning electron microscopy; n is the number of images obtained.

Download (7KB)
3. Fig. 2. X-ray diffraction pattern of an amorphous alloy before deformation.

Download (11KB)
4. Fig. 3. X-ray diffraction pattern of the alloy after deformation indicating the reflection indices from aluminum crystals.

Download (13KB)
5. Fig. 4. Examples of images of the surface of a deformed alloy: a section near the edge (a) and in the middle of the sample (b).

Download (58KB)
6. Fig. 5. Examples of images of the surface of a deformed alloy with highlighted steps: a section near the edge (a) and in the middle of the sample (b).

Download (74KB)
7. Fig. 6. Dependence of the total length of steps l on the distance from the edge of the alloy sample x after deformation.

Download (11KB)

Copyright (c) 2025 Russian Academy of Sciences