Molecular Targets of Plant-based Alkaloids and Polyphenolics in Liver and Breast Cancer- An Insight into Anticancer Drug Development
- Авторлар: Batool S.1, Asim L.2, Qureshi F.3, Masood A.4, Mushtaq M.5, Saleem R.6
-
Мекемелер:
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab,
- Department of Basic and Applied Chemistry,, Faculty of Science and Technology University of Central Punjab
- Department of Basic and Applied Chemistry,, Faculty of Science and Technology University of Central Punjab,
- Department of Biotechnology,, Faculty of Science and Technology University of Central Punjab,
- Department of Technical Laboratory Analytics,, Abu Dhabi Vocational Education and Training Institute (ADVETI)
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE),, Lahore University of Management Sciences (LUMS)
- Шығарылым: Том 25, № 5 (2025)
- Беттер: 295-312
- Бөлім: Oncology
- URL: https://genescells.com/1871-5206/article/view/694492
- DOI: https://doi.org/10.2174/0118715206302216240628072554
- ID: 694492
Дәйексөз келтіру
Толық мәтін
Аннотация
Liver and Breast cancer are ranked as the most prevailing cancers that cause high cancer-related mortality. As cancer is a life-threatening disease that affects the human population globally, there is a need to develop novel therapies. Among the available treatment options include radiotherapy, chemotherapy, surgery, and immunotherapy. The most superlative modern method is the use of plant-derived anticancer drugs that target the cancerous cells and inhibit their proliferation. Plant-derived compounds are generally considered safer than synthetic drugs/traditional therapies and could serve as potential novel targets to treat liver and breast cancer to revolutionize cancer treatment. Alkaloids and Polyphenols have been shown to act as anticancer agents through molecular approaches. They disrupt various cellular mechanisms, inhibit the production of cyclins and CDKs to arrest the cell cycle, and activate the DNA repairing mechanism by upregulating p53, p21, and p38 expression. In severe cases, when no repair is possible, they induce apoptosis in liver and breast cancer cells by activating caspase-3, 8, and 9 and increasing the Bax/Bcl-2 ratio. They also deactivate several signaling pathways, such as PI3K/AKT/mTOR, STAT3, NF-κB, Shh, MAPK/ERK, and Wnt/β-catenin pathways, to control cancer cell progression and metastasis. The highlights of this review are the regulation of specific protein expressions that are crucial in cancer, such as in HER2 over-expressing breast cancer cells; alkaloids and polyphenols have been reported to reduce HER2 as well as MMP expression. This study reviewed more than 40 of the plant-based alkaloids and polyphenols with specific molecular targets against liver and breast cancer. Among them, Oxymatrine, Hirsutine, Piperine, Solamargine, and Brucine are currently under clinical trials by qualifying as potent anticancer agents due to lesser side effects. As a lot of research is there on anticancer compounds, there is a desideratum to compile data to move towards clinical trials phase 4 and control the prevalence of liver and breast cancer.
Негізгі сөздер
Авторлар туралы
Salma Batool
Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab,
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Laiba Asim
Department of Basic and Applied Chemistry,, Faculty of Science and Technology University of Central Punjab
Email: info@benthamscience.net
Fawad Qureshi
Department of Basic and Applied Chemistry,, Faculty of Science and Technology University of Central Punjab,
Email: info@benthamscience.net
Ammara Masood
Department of Biotechnology,, Faculty of Science and Technology University of Central Punjab,
Email: info@benthamscience.net
Maria Mushtaq
Department of Technical Laboratory Analytics,, Abu Dhabi Vocational Education and Training Institute (ADVETI)
Email: info@benthamscience.net
Rahman Saleem
Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE),, Lahore University of Management Sciences (LUMS)
Email: info@benthamscience.net
Әдебиет тізімі
- Yu, X.N.; Chen, H.; Liu, T.T.; Wu, J.; Zhu, J.M.; Shen, X.Z. Targeting the mTOR regulatory network in hepatocellular carcinoma: Are we making headway? Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 379-391. doi: 10.1016/j.bbcan.2019.03.001 PMID: 30951815
- Jeong, S.; Zheng, B.; Wang, H.; Xia, Q.; Chen, L. Nervous system and primary liver cancer. Biochim. Biophys. Acta Rev. Cancer, 2018, 1869(2), 286-292. doi: 10.1016/j.bbcan.2018.04.002 PMID: 29660379
- Liu, W; Zhang, Q; Tang, Q; Hu, C; Huang, J; Liu, Y Lycorine inhibits cell proliferation and migration by inhibiting ROCK1/cofilin-induced actin dynamics in HepG2 hepatoblastoma cells. Oncol Rep., 2018, 40(4), 2298-2306.
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451. doi: 10.3322/caac.21583 PMID: 31577379
- Nagalingam, A.; Arbiser, J.L.; Bonner, M.Y.; Saxena, N.K.; Sharma, D. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Res., 2012, 14(1), R35. doi: 10.1186/bcr3128 PMID: 22353783
- Bale, R.; Putzer, D.; Schullian, P. Local treatment of breast cancer liver metastasis. Cancers, 2019, 11(9), 1341. doi: 10.3390/cancers11091341 PMID: 31514362
- Semenza, G.L. Cancer–stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene, 2013, 32(35), 4057-4063. doi: 10.1038/onc.2012.578 PMID: 23222717
- Ma, R.; Feng, Y.; Lin, S.; Chen, J.; Lin, H.; Liang, X.; Zheng, H.; Cai, X. Mechanisms involved in breast cancer liver metastasis. J. Transl. Med., 2015, 13(1), 64. doi: 10.1186/s12967-015-0425-0 PMID: 25885919
- Keating, G.M. Sorafenib: A review in hepatocellular carcinoma. Target. Oncol., 2017, 12(2), 243-253. doi: 10.1007/s11523-017-0484-7 PMID: 28299600
- Tinkle, CL; Haas-Kogan, D Hepatocellular carcinoma: Natural history, current management, and emerging tools. J. Biologics: Targets Ther., 2012, 6, 207.
- Furrukh, M.; Qureshi, A. Treatment of breast cancer; Review and updates. J. Ayub Med. Coll. Abbottabad, 2018, 30(2), 264-274. PMID: 29938432
- Lamb, C.A.; Vanzulli, S.I.; Lanari, C. Hormone receptors in breast cancer: More than estrogen receptors. Medicina, 2019, 79(Spec 6/1), 540-545. PMID: 31864223
- You, L.; An, R.; Liang, K.; Wang, X. Anti-breast cancer agents from Chinese herbal medicines. Mini Rev. Med. Chem., 2013, 13(1), 101-105. doi: 10.2174/138955713804484785 PMID: 23020239
- Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2014, 2(7), 377-392.
- Tiwari, R.; Rana, C. Plant secondary metabolites: A review. Int. J. Eng. Res. Gen. Sci., 2015, 3(5), 661-670.
- Anttila, J.V.; Shubin, M.; Cairns, J.; Borse, F.; Guo, Q.; Mononen, T.; Vázquez-García, I.; Pulkkinen, O.; Mustonen, V. Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression. PLOS Comput. Biol., 2019, 15(11), e1007493. doi: 10.1371/journal.pcbi.1007493 PMID: 31738747
- Kulchitsky, A.; Potkin, I.; Zubenko, S.; Chernov, N.; Talabaev, V.; Demidchik, E. Cytotoxic effects of chemotherapeutic drugs and heterocyclic compounds at application on the cells of primary culture of neuroepithelium tumors. J. Med. Chem., 2012, 8(1), 22-32.
- Khalid, E.B.; Ayman, E.L.M.E.L.K.; Rahman, H.; Abdelkarim, G.; Najda, A. Natural products against cancer angiogenesis. Tumour Biol., 2016, 37(11), 14513-14536. doi: 10.1007/s13277-016-5364-8 PMID: 27651162
- Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166. doi: 10.1016/j.canlet.2014.03.013 PMID: 24657660
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7(12), 1129-1150. doi: 10.1016/j.apjtb.2017.10.016
- Foster, D.A.; Yellen, P.; Xu, L.; Saqcena, M. Regulation of G1 cell cycle progression: Distinguishing the restriction point from a nutrient-sensing cell growth checkpoint (s). Genes Cancer, 2010, 1(11), 1124-1131. doi: 10.1177/1947601910392989 PMID: 21779436
- Visconti, R.; Della, M.R.; Grieco, D. Cell cycle checkpoint in cancer: A therapeutically targetable double-edged sword. J. Exp. Clin. Cancer Res., 2016, 35(1), 153. doi: 10.1186/s13046-016-0433-9 PMID: 27670139
- Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules, 2017, 22(2), 250. doi: 10.3390/molecules22020250 PMID: 28208712
- Pei, H.; Xue, L.; Tang, M.; Tang, H.; Kuang, S.; Wang, L.; Ma, X.; Cai, X.; Li, Y.; Zhao, M.; Peng, A.; Ye, H.; Chen, L. Alkaloids from black pepper (Piper nigrum L.) exhibit anti-inflammatory activity in murine macrophages by inhibiting activation of NF-κB pathway. J. Agric. Food Chem., 2020, 68(8), 2406-2417. doi: 10.1021/acs.jafc.9b07754 PMID: 32031370
- Ghosh, N.; Chaki, R.; Mandal, V.; Mandal, S.C. COX-2 as a target for cancer chemotherapy. Pharmacol. Rep., 2010, 62(2), 233-244. doi: 10.1016/S1734-1140(10)70262-0 PMID: 20508278
- Abdal Dayem, A.; Choi, H.; Yang, G.M.; Kim, K.; Saha, S.; Cho, S.G. The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: Molecular mechanisms. Nutrients, 2016, 8(9), 581. doi: 10.3390/nu8090581 PMID: 27657126
- Singla, R.; Jaitak, V. Multitargeted molecular docking study of natural-derived alkaloids on breast cancer pathway components. Curr. Computeraided Drug Des., 2017, 13(4), 294-302. PMID: 28382865
- Cao, J.; Wei, R.; Yao, S. Matrine has pro-apoptotic effects on liver cancer by triggering mitochondrial fission and activating Mst1-JNK signalling pathways. J. Physiol. Sci., 2019, 69(2), 185-198. doi: 10.1007/s12576-018-0634-4 PMID: 30155612
- Qian, L.; Liu, Y.; Xu, Y.; Ji, W.; Wu, Q.; Liu, Y.; Gao, Q.; Su, C. Matrine derivative WM130 inhibits hepatocellular carcinoma by suppressing EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. Cancer Lett., 2015, 368(1), 126-134. doi: 10.1016/j.canlet.2015.07.035 PMID: 26259512
- Liu, C.; Yang, S.; Wang, K.; Bao, X.; Liu, Y.; Zhou, S.; Liu, H.; Qiu, Y.; Wang, T.; Yu, H. Alkaloids from traditional chinese medicine against hepatocellular carcinoma. Biomed. Pharmacother., 2019, 120, 109543. doi: 10.1016/j.biopha.2019.109543 PMID: 31655311
- Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed. Pharmacother., 2018, 107, 615-624. doi: 10.1016/j.biopha.2018.07.147 PMID: 30114645
- Li, F.; Dong, X.; Lin, P.; Jiang, J. Regulation of Akt/FoxO3a/Skp2 axis is critically involved in berberine-induced cell cycle arrest in hepatocellular carcinoma cells. Int. J. Mol. Sci., 2018, 19(2), 327. doi: 10.3390/ijms19020327 PMID: 29360760
- Jabbarzadeh Kaboli, P.; Rahmat, A.; Ismail, P.; Ling, K.H. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur. J. Pharmacol., 2014, 740, 584-595. doi: 10.1016/j.ejphar.2014.06.025 PMID: 24973693
- Sun, Y.; Wang, W.; Tong, Y. Berberine inhibits proliferative ability of breast cancer cells by reducing metadherin. Med. Sci. Monit., 2019, 25, 9058-9066. doi: 10.12659/MSM.914486 PMID: 31779025
- Guo, Y; Pei, X. Tetrandrine-induced autophagy in MDA-MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling. Altern. Med. Rev., 2019, 2019, 7517431.
- Kang, Y.H.; Park, M.Y.; Yoon, D.Y.; Han, S.R.; Lee, C.I.; Ji, N.Y.; Myung, P.K.; Lee, H.G.; Kim, J.W.; Yeom, Y.I.; Jang, Y.J.; Ahn, D.K.; Kim, J.W.; Song, E.Y. Dysregulation of overexpressed IL-32α in hepatocellular carcinoma suppresses cell growth and induces apoptosis through inactivation of NF-κB and Bcl-2. Cancer Lett., 2012, 318(2), 226-233. doi: 10.1016/j.canlet.2011.12.023 PMID: 22198481
- Zhou, X.; Xu, Z.; Li, A.; Zhang, Z. Double-sides sticking mechanism of vinblastine interacting with α,β-tubulin to get activity against cancer cells. J. Biomol. Struct. Dyn., 2019, 37(15), 4080-4091.
- Lee, H.; Baek, S.; Lee, J.; Kim, C.; Ko, J.H.; Lee, S.G.; Chinnathambi, A.; Alharbi, S.; Yang, W.; Um, J.Y.; Sethi, G.; Ahn, K. Isorhynchophylline, a potent plant alkaloid, induces apoptotic and anti-metastatic effects in human hepatocellular carcinoma cells through the modulation of diverse cell signaling cascades. Int. J. Mol. Sci., 2017, 18(5), 1095. doi: 10.3390/ijms18051095 PMID: 28534824
- Shu, G.; Mi, X.; Cai, J.; Zhang, X.; Yin, W.; Yang, X.; Li, Y.; Chen, L.; Deng, X. Brucine, an alkaloid from seeds of Strychnos nux-vomica Linn., represses hepatocellular carcinoma cell migration and metastasis: The role of hypoxia inducible factor 1 pathway. Toxicol. Lett., 2013, 222(2), 91-101. doi: 10.1016/j.toxlet.2013.07.024 PMID: 23933019
- Saraswati, S.; Alhaider, A.A.; Agrawal, S.S. Anticarcinogenic effect of brucine in diethylnitrosamine initiated and phenobarbital-promoted hepatocarcinogenesis in rats. Chem. Biol. Interact., 2013, 206(2), 214-221. doi: 10.1016/j.cbi.2013.09.012 PMID: 24060683
- Deng, X.; Yin, F.; Lu, X.; Cai, B.; Yin, W. The apoptotic effect of brucine from the seed of Strychnos nux-vomica on human hepatoma cells is mediated via Bcl-2 and Ca2+ involved mitochondrial pathway. Toxicol. Sci., 2006, 91(1), 59-69. doi: 10.1093/toxsci/kfj114 PMID: 16443926
- Sani, I.K.; Marashi, S.H.; Kalalinia, F. Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity. Toxicol. In Vitro, 2015, 29(5), 893-900. doi: 10.1016/j.tiv.2015.03.012 PMID: 25819016
- Kalalinia, F.; Karimi-Sani, I. Anticancer properties of solamargine: A systematic review. Phytother. Res., 2017, 31(6), 858-870. doi: 10.1002/ptr.5809 PMID: 28383149
- Munari, C.C.; de Oliveira, P.F.; Campos, J.C.L.; Martins, S.P.L.; Da Costa, J.C.; Bastos, J.K.; Tavares, D.C. Antiproliferative activity of Solanum lycocarpum alkaloidic extract and their constituents, solamargine and solasonine, in tumor cell lines. J. Nat. Med., 2014, 68(1), 236-241. doi: 10.1007/s11418-013-0757-0 PMID: 23475509
- Zhou, L.; Li, X.; Chen, X.; Li, Z.; Liu, X.; Zhou, S.; Zhong, Q.; Yi, T.; Wei, Y.; Zhao, X.; Qian, Z. In vivo antitumor and antimetastatic activities of camptothecin encapsulated with N-trimethyl chitosan in a preclinical mouse model of liver cancer. Cancer Lett., 2010, 297(1), 56-64. doi: 10.1016/j.canlet.2010.04.024 PMID: 20546992
- Lin, B.; Li, D.; Zhang, L. Oxymatrine mediates Bax and Bcl-2 expression in human breast cancer MCF-7 cells. Pharmazie, 2016, 71(3), 154-157. PMID: 27183711
- Greenshields, A.L.; Doucette, C.D.; Sutton, K.M.; Madera, L.; Annan, H.; Yaffe, P.B.; Knickle, A.F.; Dong, Z.; Hoskin, D.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett., 2015, 357(1), 129-140. doi: 10.1016/j.canlet.2014.11.017 PMID: 25444919
- Do, M.T.; Kim, H.G.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Jeong, T.C.; Jeong, H.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem., 2013, 141(3), 2591-2599. doi: 10.1016/j.foodchem.2013.04.125 PMID: 23870999
- Patel, S.; Sarwat, M.; Khan, T.H. Mechanism behind the anti-tumour potential of saffron ( Crocus sativus L.): The molecular perspective. Crit. Rev. Oncol. Hematol., 2017, 115, 27-35. doi: 10.1016/j.critrevonc.2017.04.010 PMID: 28602167
- Kim, BH; Park, J-W Epidemiology of liver cancer in South Korea. J. Clin. Mol. Hepatol., 2018, 24(1), 1. doi: 10.3350/cmh.2017.0112
- Yang, F.; Shi, L.; Liang, T.; Ji, L.; Zhang, G.; Shen, Y.; Zhu, F.; Xu, L. Anti-tumor effect of evodiamine by inducing Akt-mediated apoptosis in hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2017, 485(1), 54-61. doi: 10.1016/j.bbrc.2017.02.017 PMID: 28189683
- Lou, C.; Takahashi, K.; Irimura, T.; Saiki, I.; Hayakawa, Y. Identification of Hirsutine as an anti-metastatic phytochemical by targeting NF-κB activation. Int. J. Oncol., 2014, 45(5), 2085-2091. doi: 10.3892/ijo.2014.2624 PMID: 25175557
- Lou, C.; Yokoyama, S.; Saiki, I.; Hayakawa, Y. Selective anticancer activity of hirsutine against HER2-positive breast cancer cells by inducing DNA damage. Oncol. Rep., 2015, 33(4), 2072-2076. doi: 10.3892/or.2015.3796 PMID: 25672479
- Che, J.; Zhang, F.Z.; Zhao, C.Q.; Hu, X.D.; Fan, S.J. Cyclopamine is a novel Hedgehog signaling inhibitor with significant anti-proliferative, anti-invasive and anti-estrogenic potency in human breast cancer cells. Oncol. Lett., 2013, 5(4), 1417-1421. doi: 10.3892/ol.2013.1195 PMID: 23599805
- Isah, T. Anticancer alkaloids from trees: Development into drugs. Pharmacogn. Rev., 2016, 10(20), 90-99. doi: 10.4103/0973-7847.194047 PMID: 28082790
- Xie, S.; Zhou, J. Harnessing plant biodiversity for the discovery of novel anticancer drugs targeting microtubules. Front. Plant Sci., 2017, 8, 720. doi: 10.3389/fpls.2017.00720 PMID: 28523014
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients, 2016, 8(8), 515. doi: 10.3390/nu8080515 PMID: 27556486
- Segun, P.A.; Ismail, F.M.D.; Ogbole, O.O.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O.; Sarker, S.D. Acridone alkaloids from the stem bark of Citrus aurantium display selective cytotoxicity against breast, liver, lung and prostate human carcinoma cells. J. Ethnopharmacol., 2018, 227, 131-138. doi: 10.1016/j.jep.2018.08.039 PMID: 30189240
- Habartova, K.; Cahlíková, L.; Řezáčová, M.; Havelek, R. The biological activity of alkaloids from the Amaryllidaceae: From cholinesterases inhibition to anticancer activity Nat. Prod. Commun., 2016, 11(10), 1934578X1601101038. doi: 10.1177/1934578X1601101038
- Shiu, L.Y.; Liang, C.H.; Chang, L.C.; Sheu, H.M.; Tsai, E.M.; Kuo, K.W. Solamargine induces apoptosis and enhances susceptibility to trastuzumab and epirubicin in breast cancer cells with low or high expression levels of HER2/neu. Biosci. Rep., 2009, 29(1), 35-45. doi: 10.1042/BSR20080028 PMID: 18699774
- Zhang, X.; Harrington, N.; Moraes, R.C.; Wu, M.F.; Hilsenbeck, S.G.; Lewis, M.T. Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo). Breast Cancer Res. Treat., 2009, 115(3), 505-521. doi: 10.1007/s10549-008-0093-3 PMID: 18563554
- Li, Y.; Guo, M.; Lin, Z.; Zhao, M.; Xiao, M.; Wang, C.; Xu, T.; Chen, T.; Zhu, B. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int. J. Nanomedicine, 2016, 11, 6693-6702. doi: 10.2147/IJN.S122666 PMID: 27994465
- Avtanski, D.; Poretsky, L. Phyto-polyphenols as potential inhibitors of breast cancer metastasis. Mol. Med., 2018, 24(1), 29. doi: 10.1186/s10020-018-0032-7 PMID: 30134816
- Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651. PMID: 25667441
- Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121, 109604. doi: 10.1016/j.biopha.2019.109604 PMID: 31733570
- Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8. doi: 10.3389/fnut.2016.00008 PMID: 27148534
- Fu, Y.; Chang, H.; Peng, X.; Bai, Q.; Yi, L.; Zhou, Y.; Zhu, J.; Mi, M. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One, 2014, 9(7), e102535. doi: 10.1371/journal.pone.0102535 PMID: 25068516
- Seo, H.S.; Ku, J.M.; Choi, H.S.; Choi, Y.K.; Woo, J.K.; Kim, M.; Kim, I.; Na, C.H.; Hur, H.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol. Rep., 2016, 36(1), 31-42. doi: 10.3892/or.2016.4786 PMID: 27175602
- Das, M.; Manna, K. Chalcone scaffold in anticancer armamentarium: A molecular insight. J. Toxicol., 2016, 2016, 7651047.
- Cascão, R.; Fonseca, J.E.; Moita, L.F. Celastrol: A spectrum of treatment opportunities in chronic diseases. Front. Med., 2017, 4, 69. doi: 10.3389/fmed.2017.00069 PMID: 28664158
- Xiong, J.; Li, J.; Yang, Q.; Wang, J.; Su, T.; Zhou, S. Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer. Breast Cancer Res., 2017, 19(1), 27. doi: 10.1186/s13058-017-0818-5 PMID: 28274247
- Pons, D.G.; Nadal-Serrano, M.; Torrens-Mas, M.; Valle, A.; Oliver, J.; Roca, P. UCP2 inhibition sensitizes breast cancer cells to therapeutic agents by increasing oxidative stress. Free Radic. Biol. Med., 2015, 86, 67-77. doi: 10.1016/j.freeradbiomed.2015.04.032 PMID: 25960046
- Peiró, G.; Ortiz-Martínez, F.; Gallardo, A.; Pérez-Balaguer, A.; Sánchez-Payá, J.; Ponce, J.J.; Tibau, A.; López-Vilaro, L.; Escuin, D.; Adrover, E.; Barnadas, A.; Lerma, E. Src, a potential target for overcoming trastuzumab resistance in HER2-positive breast carcinoma. Br. J. Cancer, 2014, 111(4), 689-695. doi: 10.1038/bjc.2014.327 PMID: 24937674
- Bernard, M.M.; McConnery, J.R.; Hoskin, D.W. 10-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells. Exp. Mol. Pathol., 2017, 102(2), 370-376. doi: 10.1016/j.yexmp.2017.03.006 PMID: 28315687
- Deep, G.; Agarwal, R. Antimetastatic efficacy of silibinin: Molecular mechanisms and therapeutic potential against cancer. Cancer Metastasis Rev., 2010, 29(3), 447-463. doi: 10.1007/s10555-010-9237-0 PMID: 20714788
- Jiang, K.; Wang, W.; Jin, X.; Wang, Z.; Ji, Z.; Meng, G. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol. Rep., 2015, 33(6), 2711-2718. doi: 10.3892/or.2015.3915 PMID: 25891311
- Hasanzadeh, M.; Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn. Mag., 2016, 12(47)(Suppl. 4), 436. doi: 10.4103/0973-1296.191453 PMID: 27761071
- Huang, W.W.; Tsai, S.C.; Peng, S.F.; Lin, M.W.; Chiang, J.H.; Chiu, Y.J.; Fushiya, S.; Tseng, M.T.; Yang, J.S. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int. J. Oncol., 2013, 42(6), 2069-2077. doi: 10.3892/ijo.2013.1909 PMID: 23591552
- Lee, G.A.; Choi, K.C.; Hwang, K.A. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ. Toxicol. Pharmacol., 2017, 49, 48-57. doi: 10.1016/j.etap.2016.11.016 PMID: 27902959
- Lu, L.; Guo, Q.; Zhao, L. Overview of oroxylin A: A promising flavonoid compound. Phytother. Res., 2016, 30(11), 1765-1774. doi: 10.1002/ptr.5694 PMID: 27539056
- Shen, M.; Guo, M.; Wang, Z.; Li, Y.; Kong, D.; Shao, J.; Tan, S.; Chen, A.; Zhang, F.; Zhang, Z.; Zheng, S. ROS-dependent inhibition of the PI3K/Akt/mTOR signaling is required for Oroxylin A to exert anti-inflammatory activity in liver fibrosis. Int. Immunopharmacol., 2020, 85, 106637. doi: 10.1016/j.intimp.2020.106637 PMID: 32512269
- Xu, H.; Zhang, S. Scutellarin-induced apoptosis in HepG2 hepatocellular carcinoma cells via a STAT3 pathway. Phytother. Res., 2013, 27(10), 1524-1528. doi: 10.1002/ptr.4892 PMID: 23192830
- Trejo-Solís, C.; Pedraza-Chaverrí, J.; Torres-Ramos, M.; Jiménez-Farfán, D.; Cruz, S.A.; Serrano-García, N. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition. Evid. Based Complement Alternat. Med., 2013, 2013, 705121. doi: 10.1155/2013/705121
- Bimonte, S.; Albino, V.; Piccirillo, M.; Nasto, A.; Molino, C.; Palaia, R.; Cascella, M. Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: Experimental findings and translational perspectives. Drug Des. Devel. Ther., 2019, 13, 611-621. doi: 10.2147/DDDT.S180079 PMID: 30858692
- Wang, Z.; Shen, G.; Xie, J.; Li, B.; Gao, Q. Rottlerin upregulates DDX3 expression in hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2018, 495(1), 1503-1509. doi: 10.1016/j.bbrc.2017.11.198 PMID: 29203243
- Park, H.J.; Jeon, Y.K.; You, D.H.; Nam, M.J. Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells. Food Chem. Toxicol., 2013, 60, 542-549. doi: 10.1016/j.fct.2013.08.022 PMID: 23959101
- Magee, P.J.; Allsopp, P.; Samaletdin, A.; Rowland, I.R. Daidzein, R-(+)equol and S-(−)equol inhibit the invasion of MDA-MB-231 breast cancer cells potentially via the down-regulation of matrix metalloproteinase-2. Eur. J. Nutr., 2014, 53(1), 345-350. doi: 10.1007/s00394-013-0520-z PMID: 23568763
- Koo, J.; Cabarcas-Petroski, S.; Petrie, J.L.; Diette, N.; White, R.J.; Schramm, L. Induction of proto-oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein. BMC Cancer, 2015, 15(1), 905. doi: 10.1186/s12885-015-1914-5 PMID: 26573593
- Hu, S.; Huang, L.; Meng, L.; Sun, H.; Zhang, W.; Xu, Y. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways. Mol. Med. Rep., 2015, 12(5), 6745-6751. doi: 10.3892/mmr.2015.4269 PMID: 26502751
- Fang, D.; Xiong, Z.; Xu, J.; Yin, J.; Luo, R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomed. Pharmacother., 2019, 109, 2054-2061. doi: 10.1016/j.biopha.2018.09.154 PMID: 30551461
- Su, L.; Chen, X.; Wu, J.; Lin, B.; Zhang, H.; Lan, L.; Luo, H. Galangin inhibits proliferation of hepatocellular carcinoma cells by inducing endoplasmic reticulum stress. Food Chem. Toxicol., 2013, 62, 810-816. doi: 10.1016/j.fct.2013.10.019 PMID: 24161691
- Lewandowska, U.; Szewczyk, K.; Owczarek, K.; Hrabec, Z.; Podsędek, A.; Sosnowska, D.; Hrabec, E. Procyanidins from evening primrose (Oenothera paradoxa) defatted seeds inhibit invasiveness of breast cancer cells and modulate the expression of selected genes involved in angiogenesis, metastasis, and apoptosis. Nutr. Cancer, 2013, 65(8), 1219-1231. doi: 10.1080/01635581.2013.830314 PMID: 24099118
- Garcia, A.; Zheng, Y.; Zhao, C.; Toschi, A.; Fan, J.; Shraibman, N.; Brown, H.A.; Bar-Sagi, D.; Foster, D.A.; Arbiser, J.L. Honokiol suppresses survival signals mediated by Ras-dependent phospholipase D activity in human cancer cells. Clin. Cancer Res., 2008, 14(13), 4267-4274. doi: 10.1158/1078-0432.CCR-08-0102 PMID: 18594009
- Avtanski, D.B.; Nagalingam, A.; Bonner, M.Y.; Arbiser, J.L.; Saxena, N.K.; Sharma, D. Honokiol inhibits epithelial—mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E‐cadherin axis. Mol. Oncol., 2014, 8(3), 565-580. doi: 10.1016/j.molonc.2014.01.004 PMID: 24508063
- Wang, N.; Wang, Z.Y.; Mo, S.L.; Loo, T.Y.; Wang, D.M.; Luo, H.B.; Yang, D.P.; Chen, Y.L.; Shen, J.G.; Chen, J.P. Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res. Treat., 2012, 134(3), 943-955. doi: 10.1007/s10549-012-1977-9 PMID: 22350787
- Sun, G.; Zhang, S.; Xie, Y.; Zhang, Z.; Zhao, W. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol. Lett., 2016, 11(1), 150-158. doi: 10.3892/ol.2015.3845 PMID: 26870182
- Chen, Y.C.; Yang, L.L.; Lee, T.J.F. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation. Biochem. Pharmacol., 2000, 59(11), 1445-1457. doi: 10.1016/S0006-2952(00)00255-0 PMID: 10751555
- Nahum, A.; Hirsch, K.; Danilenko, M.; Watts, C.K.W.; Prall, O.W.J.; Levy, J.; Sharoni, Y. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27Kip1 in the cyclin E–cdk2 complexes. Oncogene, 2001, 20(26), 3428-3436. doi: 10.1038/sj.onc.1204452 PMID: 11423993
- Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals, 2021, 14(2), 157. doi: 10.3390/ph14020157 PMID: 33673021
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614. doi: 10.3389/fphar.2019.01614 PMID: 32116665
- Jafri, A.; Amjad, S.; Bano, S.; Kumar, S.; Serajuddin, M.; Arshad, M. Efficacy of nano-phytochemicals over pure phytochemicals against various cancers: current trends and future prospects. In: Nanomaterials and Environmental Biotechnology; Springer, 2020; pp. 407-424.
- Tauro, S.; Dhokchawle, B.; Mohite, P.; Nahar, D.; Nadar, S.; Coutinho, E. Natural anticancer agents: Their therapeutic potential, challenges and promising outcomes. Curr. Med. Chem., 2024, 31(7), 848-870. doi: 10.2174/0929867330666230502113150 PMID: 37138435
- Melfi, F.; Carradori, S.; Mencarelli, N.; Campestre, C.; Gallorini, M.; Di Giacomo, S.; Di Sotto, A. Natural products as a source of new anticancer chemotypes. Expert Opin. Ther. Pat., 2023, 33(11), 721-744. doi: 10.1080/13543776.2023.2265561 PMID: 37775999
- Alharbi, K.S.; Almalki, W.H.; Makeen, H.A.; Albratty, M.; Meraya, A.M.; Nagraik, R.; Sharma, A.; Kumar, D.; Chellappan, D.K.; Singh, S.K.; Dua, K.; Gupta, G. Role of medicinal plant‐derived nutraceuticals as a potential target for the treatment of breast cancer. J. Food Biochem., 2022, 46(12), e14387. doi: 10.1111/jfbc.14387 PMID: 36121313
- Thilagavathi, R.; Begum, S.S.; Varatharaj, S.D.; Balasubramaniam, A.; George, J.S.; Selvam, C. Recent insights into the hepatoprotective potential of medicinal plants and plant-derived compounds. Phytother. Res., 2023, 37(5), 2102-2118. doi: 10.1002/ptr.7821 PMID: 37022281
- Twaij, B.M.; Hasan, M.N. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. Int. J. Plant Biol., 2022, 13(1), 4-14. doi: 10.3390/ijpb13010003
- Wawrosch, C.; Zotchev, S.B. Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook. Appl. Microbiol. Biotechnol., 2021, 105(18), 6649-6668. doi: 10.1007/s00253-021-11539-w PMID: 34468803
Қосымша файлдар
