Sequencing and annotation of the chloroplast genome of Triticum timonovum Heslot et Ferrary

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The chloroplast genome of the synthetic octaploid Triticum timonovum Heslot et Ferrary k-43065 (France) was sequenced for the first time. Plastome sequencing was carried out on a Genolab M sequencer (GeneMind, China). The genome assembly was carried out using the NOVOwrap program. The size of the chloroplast genome of T. timonovum was 136158 bp. Meanwhile, the length of the inverted repeat region was 21552 bp, the SSC region was 12795 bp. and LSC – 80257 bp. The chloroplast genomes of T. timonovum and different T. timopheevii accessions from the GenBank database were compared. As for the chloroplast genome, T. timonovum was closer to T. timopheevii (AB976560.1), but differed from it by the presence of one insert A at position 47891.

Full Text

Restricted Access

About the authors

А. R. Kuluev

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: kuluev@bk.ru
Russian Federation, 450054, Ufa

R. T. Matniyazov

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kuluev@bk.ru
Russian Federation, 450054, Ufa

B. R. Kuluev

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kuluev@bk.ru
Russian Federation, 450054, Ufa

L. Yu. Privalov

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kuluev@bk.ru
Russian Federation, 450054, Ufa

A. V. Chemeris

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kuluev@bk.ru
Russian Federation, 450054, Ufa

References

  1. Heslot H., Raymond R. Obtention experimentale d’un autotetraploide aberrant (Triticum timonovum) a partir de Triticum timopheevi Zhuk. // Compt. Rend. Hebd. Séances Acad. Sci. 1959. V. 248. P. 452–455.
  2. Мурашёв В.В., Морозова З.А. Сравнительный морфогенез Triticum timopheevii (Zhyk.) и синтезированного октоплоидного вида T. timonovum Heslot еt Ferrary // Вест. Моск. у-та. Серия 16. 2008. T. 63. № 3. C. 127–133.
  3. Badaeva E.D., Badaev N.S., Filatenko A.A. et al. Cytological investigation of cereal, hexa- and octoploid species containing G genome // Genetika (Mos.). 1990. V. 26. № 4. P. 708–716.
  4. Badaeva E.D., Filatenko A.A., Badaev N.S. Cytogenetic investigation of Triticum timopheevii (Zhuk.) Zhuk. and related species using the C-banding technique // Theor. Appl. Genet. 1994. V. 89. P. 622–628.
  5. Shi C., Hu N., Huang H. et al. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing // PLoS One. 2012. V. 7. № 2. https://doi.org/10.1371/journal.pone.0031468
  6. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data // Bioinformatics. 2014. V. 30. P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  7. Wu P., Xu C., Chen H. et al. NOVOWrap: An automated solution for plastid genome assembly and structure standardization // Mol. Ecol. Resour. 2021. V. 21. № 6. P. 2177–2186. https://doi.org/10.1111/1755-0998.13410
  8. Shi L., Chen H., Jiang M. et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer // Nucl. Ac. Res. 2019. V. 47. P. W65–W73. https://doi.org/10.1093/nar/gkz345
  9. Zheng S., Poczai P., Hyvönen J. et al. Chloroplot: An online program for the versatile plotting of organelle genomes // Front Genet. 2020. V. 11. https://doi.org/10.3389/fgene.2020.576124
  10. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability // Mol. Biol. Evol. 2013. V. 30. № 4. P. 772–780. https://doi.org/10.1093/molbev/mst010
  11. Han M.V., Zmasek C.M. phyloXML: XML for evolutionary biology and comparative genomics // BMC Bioinformatics. 2009. V. 10. P. 1–6. https://doi.org/10.1186/1471-2105-10-356
  12. Mori N., Kondo Y., Ishii T. et al. Genetic diversity and origin of timopheevi wheat inferred by chloroplast DNA fingerprinting // Bred. Sci. 2009. V. 59. P. 571–578. https://doi.org/10.1270/jsbbs.59.571
  13. Gogniashvili M., Naskidashvili P., Bedoshvili D. et al. Complete chloroplast DNA sequences of Zanduri wheat (Triticum spp.) // Genet. Resour. Crop. Evol. 2015. V. 62. P. 1269–1277. https://doi.org/10.1007/s10722-015-0230-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a is a visual representation in the form of a ring of the sequenced chloroplast genome of T. timonovum k-43065. The genes are displayed in different colors, the blue circle in the middle shows the GC level. IRA is the inverted repeat region A, IRB is the inverted repeat region B. Genes located outside the outer circle are transcribed clockwise, and genes located inside are transcribed counterclockwise. b is a phylogenetic tree based on the alignment of nucleotide sequences of chloroplast genomes of various T. timopheevii samples from GenBank, T. turgidum MG958546.1 and T. timonovum k-43065. The Secale cereale subsp is presented as an appearance. segetale (MZ507427.1).

Download (597KB)

Copyright (c) 2024 Russian Academy of Sciences