Features of the changes in composition and structure of rare-earth halide complexes with acethylurea

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Structures of rare-earth halide complexes with acetylurea (AcUr), [Sm(AcUr)2(H₂O)5]Cl3, [Eu(AcUr)2(H₂O)5]Br3 · · H₂O, [Ln(AcUr)2(H₂O)4]Br3 · H₂O (Ln = Tm, Yb), and [Lu(AcUr)(H₂O)6]Br3 were determined. Analysis of compositions and structures of these compounds along with the earlier reported analogues allowed us to consider the features of their changes depending on the atomic number of the element.It was found that the size of the central atom is the decisive factor.

全文:

受限制的访问

作者简介

P. Akulinina

Lomonosov Institute of Fine Chemical Technologies, RTU MIREA

Email: savinkina@mirea.ru
俄罗斯联邦, 86 Vernadsky, Moscow, 119571

E. Savinkina

Lomonosov Institute of Fine Chemical Technologies, RTU MIREA

编辑信件的主要联系方式.
Email: savinkina@mirea.ru
俄罗斯联邦, 86 Vernadsky, Moscow, 119571

M. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry, RAS

Email: savinkina@mirea.ru
俄罗斯联邦, 31, Bldg 4 Leninsky pr., Moscow, 119071

参考

  1. Paul R.Ch., Sood S., Chadha S.L. // J. Inorg. Nucl. Chem. 1971. V. 33. P. 2703.
  2. Усубалиева У., Ногоев К., Сулайманкулов К., Коваленко Л. // Журн. неорган. химии. 1976. Т. 21. № 4. С. 1100.
  3. Харитонов Ю.Я., Гущина Т.Н. // Журн. неорган. химии. 1987. Т. 32. № 2. С. 410.
  4. Аликберова Л.Ю., Альбов Д.В., Бушмелева А.С. и др. // Коорд. химия. 2014. Т. 40. № 12. С. 748. https://doi.org/10.1134/S1070328414120021
  5. Bushmeleva A.S., Alikberova L.Y., Albov D.V. Advancing Coordination, Bioinorganic and Applied Inorganic Chemistry. The 50th Anniversary of ICCBIC / Eds. Melník M., Segľa P., Tatarko M. Bratislava: Slovak Chemical Society, 2015. P. 27–40.
  6. Isbjakowa A.S., Grigoriev M.S., Golubev D.V., Savinkina E.V. // J. Mol. Struct. 2020. V. 1201. P. 127141. https://doi.org/10.1016/j.molstruc.2019.127141
  7. Savinkina E.V., Akulinin P.V., Golubev D.V., Grigoriev M.S. // Polyhedron. 2021. V. 204. P. 115258. https://doi.org/10.1016/j.poly.2021.115258
  8. Акулинин П.В., Савинкина Е.В., Григорьев М.С., Белоусов Ю.А. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 727. https://doi.org/10.1134/S0036023624600072
  9. APEX2 // Bruker AXS Inc. 2007. Madison, Wisconsin, USA.
  10. Sheldrick G.M. SADABS // Bruker AXS Inc. 2004. Madison, Wisconsin, USA.
  11. Sheldrick G.M. SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement.Gottingen: University of Gottingen,1997.
  12. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  13. Лайков Д.Н., Устынюк Ю.А. // Изв. РАН. Сер. хим. 2005. Т. 54. № 3. С. 804. https://doi.org/10.1007/s11172-005-0329-x
  14. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  15. Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. № 1–3. P. 116. https://doi.org/10.1016/j.cplett.2005.09.046
  16. Порай-Кошиц М.А., Асланов Л.А. // Журн. структур. химии. 1972. Т. 13. № 2. С. 266.
  17. Uno T., Machida K., Hanai K., Saito Y. // Bull. Chem. Soc. Jpn. 1969. V. 42. P. 619. https://doi.org/10.1246/bcsj.42.619
  18. Аликберова Л.Ю., Антоненко Т.А., Альбов Д.В. // Тонк. хим. технол. 2015. Т. 10. № 1. С. 66.
  19. Haddad S.F. // Acta Crystallogr., Sect. C. 1988. V. 44. № 5. P. 815. https://doi.org/10.1107/S010827018800054X.
  20. Haddad S.F. // Acta Crystallogr., Sect. C. 1987. V. 43. № 10. P. 1882. https://doi.org/10.1107/S0108270187089753.
  21. Корнилов А.Д., Григорьев М.С., Савинкина Е.В. // Тонк. хим. технол. 2022. Т. 17. № 2. С. 172. https://doi.org/10.32362/2410-6593-2022-17-2-172-181
  22. Антоненко Т.А., Аликберова Л.Ю., Альбов Д.В. и др. // Коорд. химия. 2013. Т. 39. № 3. С. 187. https://doi.org/10.1134/S1070328413020024
  23. Аликберова Л.Ю., Антоненко Т.А., Альбов Д.В. и др. // Тонк. хим. технол. 2013. Т. 8. № 4. С. 57.
  24. Cotton S.A. // ComptesRendus. Chimie. 2005. V. 8. № 2. P. 129. https://doi.org/10.1016/j.crci.2004.07.002
  25. Kim P., Anderko A., Navrotsky A., Riman R.E. // Minerals. 2018. V. 8. № 3. P. 106. https://doi.org/10.3390/min8030106
  26. Gumin´ski C., Voigt H., Zeng D. // Monatsh. Chem. 2011. V. 142. P. 211. https://doi.org/10.1007/s00706-011-0457-y
  27. Голикова М.В., Япрынцев А.Д., Цзя Ч. и др. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1422. https://doi.org/10.1134/S0036023623601800
  28. Bardonov D.A., Lyssenko K.A., Degtyareva S.S. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 334. https://doi.org/10.1134/S1070328423601565
  29. Savinkina E.V., Karavaev I.A., Grigoriev M.S. // Inorg. Chim. Acta. 2022. V. 532. P. 120759. https://doi.org/10.1016/j.ica.2021.120759
  30. Kiskin M.A., Konnik O.V., Shul’gin V.F. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 476. https://doi.org/10.1134/S107032842460030X
  31. Сулейманов X., Порай-Кошиц M.А., Анцышкина A.C., Сулайманкулов К. // Журн. неорган. химии. 1971. Т. 16. № 12. С. 3394.
  32. Drakopoulou L., Papatriantafyllopoulou C., Terzis A. et al. // Bioinorg. Chem. Appl. 2007. V. 2007. № 1. P. 051567.
  33. https://doi.org/10.1155/2007/51567
  34. Заполоцкий Е.Н., Бабайлов С.П. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1646. https://doi.org/10.1134/S0036023622601064
  35. Verma G., Hostert J., Summerville A.A. et al. // ACS Appl. Mater. Interfaces. 2024. V. 16. № 13. P. 16912. https://doi.org/10.1021/acsami.3c17565
  36. Dong Z., Mattocks J.A., Deblonde G.J. et al. // ACS Cent. Sci. 2021. V. 7. № 11. P. 1798. https://doi.org/10.1021/acscentsci.1c00724
  37. Ye Q., Wang D., Wei N. // Trends Biotechnol. 2024. V. 42. № 5. P. 575. https://doi.org/10.1016/j.tibtech.2023.10.011

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of the compound [Eu(AcUr)2(H2O)5]Br3 · H2O (I) at 100K according to X-ray diffraction data. Temperature shift ellipsoids are shown with a probability of 50%, hydrogen atoms are not shown.

下载 (267KB)
3. Fig. 2. Structure of the compound [Tm(AcUr)2(H2O)4]Br3 · H2O (II) at 100 K according to X-ray diffraction data. Temperature shift ellipsoids are shown with a probability of 50%, hydrogen atoms are not shown.

下载 (314KB)
4. Fig. 3. Structure of the compound [Lu(AcUr)(H2O)6]Br3 (IV) at 100 K according to X-ray diffraction data. Temperature shift ellipsoids are shown with a probability of 50%, hydrogen atoms are not shown.

下载 (275KB)
5. Fig. 4. General view of the starting geometry for connection II.

下载 (285KB)
6. Supplementary
下载 (2MB)
7. Supplementary
下载 (968KB)

版权所有 © Russian Academy of Sciences, 2025