Закономерности изменения состава и строения координационных соединений галогенидов редкоземельных элементов с ацетилкарбамидом

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Установлена структура координационных соединений галогенидов редкоземельных элементов с ацетилкарбамидом (AcUr) [Sm(AcUr)2(H₂O)5]Cl3, [Eu(AcUr)2(H₂O)5]Br3 · H₂O, [Ln(AcUr)2(H₂O)4]Br3 · H₂O, где Ln = Tm, Yb, и [Lu(AcUr)(H₂O)6]Br3. Анализ состава и строения полученных соединений, а также ранее описанных аналогов позволил рассмотреть закономерности их изменения в зависимости от порядкового номера элемента. Обнаружено, что решающим фактором является размер центрального атома.

Полный текст

Доступ закрыт

Об авторах

П. В. Акулинин

Институт тонких химических технологий им. М.В. Ломоносова, РТУ МИРЭА

Email: savinkina@mirea.ru
Россия, пр-т Вернадского, 86, Москва, 119571

Е. В. Савинкина

Институт тонких химических технологий им. М.В. Ломоносова, РТУ МИРЭА

Автор, ответственный за переписку.
Email: savinkina@mirea.ru
Россия, пр-т Вернадского, 86, Москва, 119571

М. С. Григорьев

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: savinkina@mirea.ru
Россия, Ленинский пр-т, 31, корп. 4, Москва, 119071

Список литературы

  1. Paul R.Ch., Sood S., Chadha S.L. // J. Inorg. Nucl. Chem. 1971. V. 33. P. 2703.
  2. Усубалиева У., Ногоев К., Сулайманкулов К., Коваленко Л. // Журн. неорган. химии. 1976. Т. 21. № 4. С. 1100.
  3. Харитонов Ю.Я., Гущина Т.Н. // Журн. неорган. химии. 1987. Т. 32. № 2. С. 410.
  4. Аликберова Л.Ю., Альбов Д.В., Бушмелева А.С. и др. // Коорд. химия. 2014. Т. 40. № 12. С. 748. https://doi.org/10.1134/S1070328414120021
  5. Bushmeleva A.S., Alikberova L.Y., Albov D.V. Advancing Coordination, Bioinorganic and Applied Inorganic Chemistry. The 50th Anniversary of ICCBIC / Eds. Melník M., Segľa P., Tatarko M. Bratislava: Slovak Chemical Society, 2015. P. 27–40.
  6. Isbjakowa A.S., Grigoriev M.S., Golubev D.V., Savinkina E.V. // J. Mol. Struct. 2020. V. 1201. P. 127141. https://doi.org/10.1016/j.molstruc.2019.127141
  7. Savinkina E.V., Akulinin P.V., Golubev D.V., Grigoriev M.S. // Polyhedron. 2021. V. 204. P. 115258. https://doi.org/10.1016/j.poly.2021.115258
  8. Акулинин П.В., Савинкина Е.В., Григорьев М.С., Белоусов Ю.А. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 727. https://doi.org/10.1134/S0036023624600072
  9. APEX2 // Bruker AXS Inc. 2007. Madison, Wisconsin, USA.
  10. Sheldrick G.M. SADABS // Bruker AXS Inc. 2004. Madison, Wisconsin, USA.
  11. Sheldrick G.M. SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement.Gottingen: University of Gottingen,1997.
  12. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  13. Лайков Д.Н., Устынюк Ю.А. // Изв. РАН. Сер. хим. 2005. Т. 54. № 3. С. 804. https://doi.org/10.1007/s11172-005-0329-x
  14. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  15. Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. № 1–3. P. 116. https://doi.org/10.1016/j.cplett.2005.09.046
  16. Порай-Кошиц М.А., Асланов Л.А. // Журн. структур. химии. 1972. Т. 13. № 2. С. 266.
  17. Uno T., Machida K., Hanai K., Saito Y. // Bull. Chem. Soc. Jpn. 1969. V. 42. P. 619. https://doi.org/10.1246/bcsj.42.619
  18. Аликберова Л.Ю., Антоненко Т.А., Альбов Д.В. // Тонк. хим. технол. 2015. Т. 10. № 1. С. 66.
  19. Haddad S.F. // Acta Crystallogr., Sect. C. 1988. V. 44. № 5. P. 815. https://doi.org/10.1107/S010827018800054X.
  20. Haddad S.F. // Acta Crystallogr., Sect. C. 1987. V. 43. № 10. P. 1882. https://doi.org/10.1107/S0108270187089753.
  21. Корнилов А.Д., Григорьев М.С., Савинкина Е.В. // Тонк. хим. технол. 2022. Т. 17. № 2. С. 172. https://doi.org/10.32362/2410-6593-2022-17-2-172-181
  22. Антоненко Т.А., Аликберова Л.Ю., Альбов Д.В. и др. // Коорд. химия. 2013. Т. 39. № 3. С. 187. https://doi.org/10.1134/S1070328413020024
  23. Аликберова Л.Ю., Антоненко Т.А., Альбов Д.В. и др. // Тонк. хим. технол. 2013. Т. 8. № 4. С. 57.
  24. Cotton S.A. // ComptesRendus. Chimie. 2005. V. 8. № 2. P. 129. https://doi.org/10.1016/j.crci.2004.07.002
  25. Kim P., Anderko A., Navrotsky A., Riman R.E. // Minerals. 2018. V. 8. № 3. P. 106. https://doi.org/10.3390/min8030106
  26. Gumin´ski C., Voigt H., Zeng D. // Monatsh. Chem. 2011. V. 142. P. 211. https://doi.org/10.1007/s00706-011-0457-y
  27. Голикова М.В., Япрынцев А.Д., Цзя Ч. и др. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1422. https://doi.org/10.1134/S0036023623601800
  28. Bardonov D.A., Lyssenko K.A., Degtyareva S.S. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 334. https://doi.org/10.1134/S1070328423601565
  29. Savinkina E.V., Karavaev I.A., Grigoriev M.S. // Inorg. Chim. Acta. 2022. V. 532. P. 120759. https://doi.org/10.1016/j.ica.2021.120759
  30. Kiskin M.A., Konnik O.V., Shul’gin V.F. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 476. https://doi.org/10.1134/S107032842460030X
  31. Сулейманов X., Порай-Кошиц M.А., Анцышкина A.C., Сулайманкулов К. // Журн. неорган. химии. 1971. Т. 16. № 12. С. 3394.
  32. Drakopoulou L., Papatriantafyllopoulou C., Terzis A. et al. // Bioinorg. Chem. Appl. 2007. V. 2007. № 1. P. 051567.
  33. https://doi.org/10.1155/2007/51567
  34. Заполоцкий Е.Н., Бабайлов С.П. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1646. https://doi.org/10.1134/S0036023622601064
  35. Verma G., Hostert J., Summerville A.A. et al. // ACS Appl. Mater. Interfaces. 2024. V. 16. № 13. P. 16912. https://doi.org/10.1021/acsami.3c17565
  36. Dong Z., Mattocks J.A., Deblonde G.J. et al. // ACS Cent. Sci. 2021. V. 7. № 11. P. 1798. https://doi.org/10.1021/acscentsci.1c00724
  37. Ye Q., Wang D., Wei N. // Trends Biotechnol. 2024. V. 42. № 5. P. 575. https://doi.org/10.1016/j.tibtech.2023.10.011

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Строение соединения [Eu(AcUr)2(H2O)5]Br3 · H2O (I) при 100K по данным РСА. Эллипсоиды температурных смещений приведены с вероятностью 50%, атомы водорода не показаны.

Скачать (267KB)
3. Рис. 2. Строение соединения [Tm(AcUr)2(H2O)4]Br3 · H2O (II) при 100 K по данным РСА. Эллипсоиды температурных смещений приведены с вероятностью 50%, атомы водорода не показаны.

Скачать (314KB)
4. Рис. 3. Строение соединения [Lu(AcUr)(H2O)6]Br3 (IV) при 100 K по данным РСА. Эллипсоиды температурных смещений приведены с вероятностью 50%, атомы водорода не показаны.

Скачать (275KB)
5. Рис. 4. Общий вид стартовой геометрии для соединения II.

Скачать (285KB)
6. Приложение
7. Приложение
Скачать (968KB)

© Российская академия наук, 2025