Alkyltriphenylphosphonium Arenesulfonates: Synthesis and Structures

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The reactions of equimolar amounts of alkyltriphenylphosphonium bromide with arenesulfonic acids in an aqueous-acetone solution afford alkyltriphenylphosphonium arenesulfonates [Ph3PCH2ОMe][OSO2C6H3(OH-4)(COOH-3)] (I), [Ph3PCH2СN][OSO2C6H4(COOH)-2] (II), [Ph3PCH2C(O)Me][OSO2С6H4(COOH-2] (III), and [Ph3PCH2C(O)Me][OSO2Naft-1] (IV). According to the X-ray diffraction (XRD) data, the crystals of compounds I−IV have ionic structures with tetrahedral alkyltriphenylphosphonium cations (P−С 1.7820(19)−1.8330(20) A, CPC 05.37(10)°−112.09(12)°) and arenesulfonate anions. The crystal of compound I contains hydrogen bonds (S=O∙∙∙H−OC(O) 1.87 A) linking the arenesulfonate anions into chains. The structural organization of the crystals of compounds I−IV is mainly formed due to numerous weak hydrogen bonds between the cations and anions, for instance, S=O∙∙∙H−Car (2.29−2.70 A), C=O∙∙∙H–C (2.48 and 2.59 A), and N∙∙∙H–C (2.62−2.68 A).

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Sharutin

South Ural State University (National Research University)

Хат алмасуға жауапты Автор.
Email: sharutin50@mail.ru
Ресей, Chelyabinsk

O. Sharutina

South Ural State University (National Research University)

Email: sharutin50@mail.ru
Ресей, Chelyabinsk

E. Mekhanoshina

South Ural State University (National Research University)

Email: sharutin50@mail.ru
Ресей, Chelyabinsk

Әдебиет тізімі

  1. The Chemistry of Organophosphorus Compounds, Hartley, F.R., Ed., New York: Wiley, 1983, vol. 3.
  2. Moritz, R., Wagner, M., Schollmeyer, D., et al., Chem.-Eur. J., 2015, vol. 21, p. 9119. https://doi.org/10.1002/chem.201406370
  3. Werner, T., Adv. Synth. Catal., 2009, vol. 351, p. 1469. https://doi.org/10.1002/adsc.200900211
  4. Cordovilla, C., Bartolome, C., Martinez-Ilarduya, J.M., et al., ACS Catal., 2015, vol. 5, p. 3040. https://doi.org/10.1021/acscatal.5b00448
  5. Chong, C.C., Hirao, H., and Kinjo, R., Angew. Chem., Int. Ed. Engl., 2015, vol. 127, p. 192. https://doi.org/10.1002/ange.201408760
  6. Luiz, J.F. and Spikes, H., Tribology Lett., 2020, vol. 68, p. 75. https://doi.org/10.1007/s11249-020-01315-8
  7. Zhu, Ch.-L., Zhang, F.-G., Meng, W., et al., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, p. 5869. https://doi.org/10.1002/anie.201100283
  8. Cassity, C.G., Mirjafari, A., Mobarrez, N., et al., Chem. Commun., 2013, vol. 49, no. 69, p. 7590. https://doi.org/10.1039/c3cc44118k
  9. Canac, Y., Duhayon, C., and Chauvin, R., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, p. 6313. https://doi.org/10.1002/anie.200701490
  10. Milenkovic, M., Warzajtis, B., Rychlewska, U., et al., Molecules, 2012, vol. 17, no. 3, p. 2567. https://doi.org/10.3390/molecules17032567
  11. Pavlova, J.A., Khairullina, Z.Z., Tereshchenkov, A.G., et al., Antibiotics, 2021, vol. 10, p. 489. https://doi.org/10.3390/antibiotics10050489
  12. Tsepaeva, O.V., Salikhova, T.I., Grigor′eva, L.R., et al., Med. Chem. Res., 2021, vol. 30, p. 925. https://doi.org/10.1007/s00044-020-02674-6
  13. Sodano, F., Rolando, B., Spyrakis, F., et al., ChemMedChem, 2018, vol. 13, p. 1238. https://doi.org/10.1002/cmdc.201800088
  14. Mironov, V.F., Nemtarev, A.V., Tsepaeva, O.V., et al., Molecules, 2021, vol. 26, p. 6350. https://doi.org/10.3390/molecules26216350
  15. Khasiyatullina, N.R., Gubaidullin, A.T., Shinkareva, A.M., et al., Russ. Chem. Bull., 2020, vol. 69, p. 2140. https://doi.org/10.1007/s11172-020-3012-3
  16. Romanov, S., Aksunova, A., Bakhtiyarova, Y., et al., J. Organomet. Chem., 2020, vol. 910, p. 121130. https://doi.org/10.1016/j.jorganchem.2020.121130
  17. Sharutin, V.V., Sharutina, O.K., and Mekhanoshina, E.S., Vest. YuUrGU. Ser. Khim., 2022, vol. 14, no. 2, p. 41.
  18. Sharutin, V.V., Sharutina, O.K., and Mekhanoshina, E.S., Russ. J. Gen. Chem., 2022, vol. 92, no. 6, p. 969.
  19. Sharutin, V.V., Sharutina, O.K., and Mekhanoshina, E.S., J. Struct. Chem., 2022, vol. 63, no. 10, p. 1629.
  20. Mekhanoshina, E.S., Vest. YuUrGU. Ser. Khim., 2023, vol. 15, no. 1, p. 31.
  21. Mekhanoshina, E.S., Vest. YuUrGU. Ser. Khim., 2023, vol. 15, no. 2, p. 55.
  22. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System, Madison: Bruker AXS Inc., 1998.
  23. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Madison: Bruker AXS Inc., 1998.
  24. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726
  25. Tarasevich, B.N., IK-spektry osnovnykh klassov organicheskikh soedinenii (IR Spectra of Main Classses of Organic Compounds), Tarasevich, B.N., Ed., Moscow: MGU, 2012.
  26. Infrakrasnaya spektroskopiya organicheskikh i prirodnykh soedinenii: ucheb. posobie (Infrared Spectroscopy of Organic and Natural Compounds. Study Guide), Vasil′ev, A.V., Grinenko, E.V., Shchukin, A.O., et al., Eds., St.-Petersburg: SPbGLTA, 2007.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. General view of connection I. Bond lengths: P—C — 1.790(2)-1.820(3); S—O — 1.443(3)-1.464(2); S—C — 1.783(2) Å and valence angles: CPC — 105.37(10)-112.09(12)°.

Жүктеу (104KB)
3. Fig. 2. General view of the connection II. Bond lengths: P—C — 1.785(2)-1.833(2); S—O — 1.446(2)-1.464(2); S—C — 1.794(2) Å and valence angles: CPC — 108.31(11)-112.09(10)°.

Жүктеу (100KB)
4. Fig. 3. General view of the connection III. Bond lengths: P—C — 1.784(5)-1.795(5); S—O — 1.433(4)-1.457(5); S—C — 1.786(5) Å and valence angles: CPC — 107.1(3)-112.6(3)°.

Жүктеу (89KB)
5. Fig. 4. General view of the connection IV. Bond lengths: P—C — 1.782(2)-1.796(2); S—O — 1.433(2)-1.440(2) Å; S—C — 1.776(2) Å and valence angles: CPC — 105.23(9)-112.20(9)°.

Жүктеу (80KB)
6. Fig. 5. The chain of arenesulfonate anions in crystal I.

Жүктеу (71KB)

© Российская академия наук, 2024