Sinularin Exerts Anti-cancer Effects by Inducing Oxidative Stress-mediated Ferroptosis, Apoptosis, and Autophagy in Prostate Cancer Cells


Cite item

Full Text

Abstract

Introduction::Prostate cancer is the second-leading cause of cancer death in men. Sinularin is a soft coralsderived natural compound that has anticancer activity in many cancer cells. However, the pharmacological action of sinularin in prostate cancer is unclear.

Aim:The aim of the study is to examine the anticancer effects of sinularin in prostate cancer cells.

Methods: We explored the anticancer effects of sinularin on the prostate cancer cell lines, PC3, DU145, and LNCaP, by MTT, Transwell assay, wound healing, flow cytometry, and western blotting.

Results: Sinularin inhibited the cell viability and colony formation of these cancer cells. Furthermore, sinularin inhibited testosterone-induced cell growth in LNCaP cells by downregulating the protein expression levels of androgen receptor (AR), type II 5α-reductase, and prostate-specific antigen (PSA). Sinularin significantly attenuated the invasion and migration ability of PC3 and DU145 cells, with or without TGF-β1 treatment. Sinularin inhibited epithelialmesenchymal transition (EMT) in DU145 cells after 48 h of treatment by regulating the protein expression levels of Ecadherin, N-cadherin, and vimentin. Sinularin induced apoptosis, autophagy, and ferroptosis by regulating the protein expression levels of Beclin-1, LC3B, NRF2, GPX4, PARP, caspase-3, caspase-7, caspase-9, cleaved-PARP, Bcl-2, and Bax. Moreover, intracellular reactive oxygen species (ROS) were increased but glutathione was decreased after sinularin treatment in PC3, DU145 and LNCaP cells.

Conclusion: Sinularin regulated the androgen receptor signaling pathway and triggered apoptosis, autophagy, and ferroptosis in prostate cancer cells. In conclusion, the results indicated that sinularin may be a candidate agent for human prostate cancer and need further study for being applied to human.

About the authors

ZhengPing Wu

School of Aesthetic Medicine, Yichun University

Email: info@benthamscience.net

MengQiao Su

School of Medicine,, Yichun University,

Email: info@benthamscience.net

HanWu Chen

School of Medicine, Yichun University

Email: info@benthamscience.net

XuZhou Chen

School of Medicine, Yichun University

Email: info@benthamscience.net

Chung-Yi Chen

School of Medical and Health Sciences, Fooyin University

Email: info@benthamscience.net

LiJie An

School of Medicine, Yichun University

Email: info@benthamscience.net

ZiChen Shao

College of Chemistry and Bio-engineering, Yichun University

Email: info@benthamscience.net

XiaoYu Liu

School of Aesthetic Medicine, Yichun University

Email: info@benthamscience.net

Yi Lin

School of Aesthetic Medicine, Yichun University

Email: info@benthamscience.net

Ai-Jun OuYang

Department of Pharmacy, First Affiliated Hospital of Nanchang University

Email: info@benthamscience.net

Chi-Ming Liu

School of Medicine, Yichun University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Schatten, H. Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv. Exp. Med. Biol., 2018, 1095, 1-14. doi: 10.1007/978-3-319-95693-0_1 PMID: 30229546
  2. Komura, K.; Sweeney, C.J.; Inamoto, T.; Ibuki, N.; Azuma, H.; Kantoff, P.W. Current treatment strategies for advanced prostate cancer. Int. J. Urol., 2018, 25(3), 220-231. doi: 10.1111/iju.13512 PMID: 29266472
  3. Nguyen-Nielsen, M.; Borre, M. Diagnostic and therapeutic strategies for prostate cancer. Semin. Nucl. Med., 2016, 46(6), 484-490. doi: 10.1053/j.semnuclmed.2016.07.002 PMID: 27825428
  4. Chen, C.Y.; Kao, C.L.; Liu, C.M. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int. J. Mol. Sci., 2018, 19(9), 2729. doi: 10.3390/ijms19092729 PMID: 30213077
  5. Islam, M.T.; Hossain, R.; Hassan, S.M.H.; Salehi, B.; Martins, N.; Sharifi-Rad, J.; Amarowicz, R. Biological activities of sinularin: A literature-based review. Cell. Mol. Biol., 2020, 66(4), 33-36. doi: 10.14715/cmb/2020.66.4.6 PMID: 32583788
  6. Ko, C.Y.; Shih, P.C.; Huang, P.W.; Lee, Y.H.; Chen, Y.F.; Tai, M.H.; Liu, C.H.; Wen, Z.H.; Kuo, H.M. Sinularin, an anti-cancer agent causing mitochondria-modulated apoptosis and cytoskeleton disruption in human hepatocellular carcinoma. Int. J. Mol. Sci., 2021, 22(8), 3946. doi: 10.3390/ijms22083946 PMID: 33920454
  7. Ma, Q.; Meng, X.Y.; Wu, K.R.; Cao, J.Z.; Yu, R.; Yan, Z.J. Sinularin exerts anti-tumor effects against human renal cancer cells relies on the generation of ROS. J. Cancer, 2019, 10(21), 5114-5123. doi: 10.7150/jca.31232 PMID: 31602264
  8. Huang, H.W.; Tang, J.Y.; Ou-Yang, F.; Wang, H.R.; Guan, P.Y.; Huang, C.Y.; Chen, C.Y.; Hou, M.F.; Sheu, J.H.; Chang, H.W. Sinularin selectively kills breast cancer cells showing G2/M arrest, apoptosis, and oxidative DNA damage. Molecules, 2018, 23(4), 849. doi: 10.3390/molecules23040849 PMID: 29642488
  9. Chang, Y.T.; Wu, C.Y.; Tang, J.Y.; Huang, C.Y.; Liaw, C.C.; Wu, S.H.; Sheu, J.H.; Chang, H.W. Sinularin induces oxidative stress-mediated G2/M arrest and apoptosis in oral cancer cells. Environ. Toxicol., 2017, 32(9), 2124-2132. doi: 10.1002/tox.22425 PMID: 28548367
  10. Wu, Y.J.; Wong, B.S.; Yea, S.H.; Lu, C.I.; Weng, S.H. Sinularin induces apoptosis through mitochondria dysfunction and inactivation of the pI3K/Akt/mTOR pathway in gastric carcinoma cells. Mar. Drugs, 2016, 14(8), 142. doi: 10.3390/md14080142 PMID: 27472346
  11. Chung, T.W.; Lin, S.C.; Su, J.H.; Chen, Y.K.; Lin, C.C.; Chan, H.L. Sinularin induces DNA damage, G2/M phase arrest, and apoptosis in human hepatocellular carcinoma cells. BMC Complement. Altern. Med., 2017, 17(1), 62. doi: 10.1186/s12906-017-1583-9 PMID: 28103869
  12. Hsu, S.Y.; Wen, Z.H.; Shih, P.C.; Kuo, H.M.; Lin, S.C.; Liu, H.T.; Lee, Y.H.; Wang, Y.J.; Chen, W.F.; Chen, N.F. Sinularin induces oxidative stress-mediated apoptosis and mitochondrial dysfunction, and inhibits angiogenesis in glioblastoma cells. Antioxidants, 2022, 11(8), 1433. doi: 10.3390/antiox11081433 PMID: 35892635
  13. Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84. doi: 10.1038/s41580-018-0080-4 PMID: 30459476
  14. Sun, Y.; Zhou, Q.M.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Zhao, M.; Su, S.B. Resveratrol inhibits the migration and metastasis of mda-mb-231 human breast cancer by reversing tgf-β1-induced epithelial-mesenchymal transition. Molecules, 2019, 24(6), 1131. doi: 10.3390/molecules24061131 PMID: 30901941
  15. Yoshida, J.; Ishikawa, T.; Endo, Y.; Matsumura, S.; Ota, T.; Mizushima, K.; Hirai, Y.; Oka, K.; Okayama, T.; Sakamoto, N.; Inoue, K.; Kamada, K.; Uchiyama, K.; Takagi, T.; Naito, Y.; Itoh, Y. Metformin inhibits TGF-β1-induced epithelial mesenchymal transition and liver metastasis of pancreatic cancer cells. Oncol. Rep., 2020, 44(1), 371-381. doi: 10.3892/or.2020.7595 PMID: 32627027
  16. Takahashi, K.; Menju, T.; Nishikawa, S.; Miyata, R.; Tanaka, S.; Yutaka, Y.; Yamada, Y.; Nakajima, D.; Hamaji, M.; Ohsumi, A.; Chen-Yoshikawa, T.F.; Sato, T.; Sonobe, M.; Date, H. Tranilast inhibits TGF-β1-induced epithelial-mesenchymal transition and invasion/metastasis via the suppression of SMAD4 in human lung cancer cell lines. Anticancer Res., 2020, 40(6), 3287-3296. doi: 10.21873/anticanres.14311 PMID: 32487624
  17. Onorati, A.V.; Dyczynski, M.; Ojha, R.; Amaravadi, R.K. Targeting autophagy in cancer. Cancer, 2018, 124(16), 3307-3318. doi: 10.1002/cncr.31335 PMID: 29671878
  18. Levine, B.; Kroemer, G. Biological functions of autophagy genes: A disease perspective. Cell, 2019, 176(1-2), 11-42. doi: 10.1016/j.cell.2018.09.048 PMID: 30633901
  19. D'Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592. doi: 10.1002/cbin.11137 PMID: 30958602
  20. Owen, H.C.; Appiah, S.; Hasan, N.; Ghali, L.; Elayat, G.; Bell, C. Phytochemical modulation of apoptosis and autophagy: Strategies to overcome chemoresistance in leukemic stem cells in the bone marrow microenvironment. Int. Rev. Neurobiol., 2017, 135, 249-278. doi: 10.1016/bs.irn.2017.02.012 PMID: 28807161
  21. Sun, C.Y.; Zhang, Q.Y.; Zheng, G.J.; Feng, B. Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemother. Pharmacol., 2019, 83(1), 17-26. doi: 10.1007/s00280-018-3707-4 PMID: 30353226
  22. Hirschhorn, T.; Stockwell, B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med., 2019, 133, 130-143. doi: 10.1016/j.freeradbiomed.2018.09.043 PMID: 30268886
  23. Zheng, K.; Dong, Y.; Yang, R.; Liang, Y.; Wu, H.; He, Z. Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacol. Res., 2021, 168, 105580. doi: 10.1016/j.phrs.2021.105580 PMID: 33781874
  24. Ouyang, D.Y.; Xu, L.H.; He, X.H.; Zhang, Y.T.; Zeng, L.H.; Cai, J.Y.; Ren, S. Autophagy is differentially induced in prostate cancer LNCaP, DU145 and PC-3 cells via distinct splicing profiles of ATG5. Autophagy, 2013, 9(1), 20-32. doi: 10.4161/auto.22397 PMID: 23075929
  25. Aurilio, G.; Cimadamore, A.; Mazzucchelli, R.; Lopez-Beltran, A.; Verri, E.; Scarpelli, M.; Massari, F.; Cheng, L.; Santoni, M.; Montironi, R. Androgen receptor signaling pathway in prostate cancer: From genetics to clinical applications. Cells, 2020, 9(12), 2653. doi: 10.3390/cells9122653 PMID: 33321757
  26. Chen, L.W.; Chung, H.L.; Wang, C.C.; Su, J.H.; Chen, Y.J.; Lee, C.J. Anti-acne effects of cembrene diterpenoids from the cultured soft coral Sinularia flexibilis. Mar. Drugs, 2020, 18(10), 487. doi: 10.3390/md18100487 PMID: 32992719
  27. Naujokat, C.; McKee, D.L. The "big five" phytochemicals targeting cancer stem cells: Curcumin, EGCG, sulforaphane, resveratrol and genistein. Curr. Med. Chem., 2021, 28(22), 4321-4342. doi: 10.2174/1875533XMTA02OTAxz PMID: 32107991
  28. Budi, E.H.; Schaub, J.R.; Decaris, M.; Turner, S.; Derynck, R. TGF-β as a driver of fibrosis: Physiological roles and therapeutic opportunities. J. Pathol., 2021, 254(4), 358-373. doi: 10.1002/path.5680 PMID: 33834494
  29. Kashyap, D.; Garg, V.K.; Goel, N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol., 2021, 125, 73-120. doi: 10.1016/bs.apcsb.2021.01.003 PMID: 33931145
  30. Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460. doi: 10.4143/crt.2016.572 PMID: 28494534
  31. Lin, X.; Ping, J.; Wen, Y.; Wu, Y. The mechanism of ferroptosis and applications in tumor treatment. Front. Pharmacol., 2020, 11, 1061. doi: 10.3389/fphar.2020.01061 PMID: 32774303

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bentham Science Publishers