Targeting the LINC00324/miR-16-5p/SEPT2 Signaling Cascade is Effective to Reverse Malignant Phenotypes in Glioblastoma


Cite item

Full Text

Abstract

Background: Long non-coding RNAs (LncRNAs) are identified as pivotal regulators and biomarkers for glioblastoma (GBM). However, the role of a novel LncRNA LINC00324 in regulating GBM progression has not been fully studied in the existing publications.

Objective: In this study, we evidenced LINC00324 to act as an oncogene to facilitate GBM development, and the underlying mechanisms have also been uncovered

Methods: Clinicopathology and follow-up data of GBM patients were retrospectively studied, LINC00324 expression in clinical tissue or cell lines of GBM was measured by Real-time qPCR, and the role of LINC00324 in cell proliferation and migration was investigated by loss-of-function experiments in vitro and in vivo. The targeting genes of LINC00324 were predicted and verified by bioinformatic analysis and dual luciferase reporter gene system, respectively.

Results: LINC00324 was found to be significantly upregulated in GBM tissues and cells in contrast to normal counterparts, and the GBM patients with high-expressed LINC00324 tended to have a worse prognosis. Further, loss-offunction experiments showed that the silencing of LINC00324 suppressed cell proliferation, colony formation and migration, and promoted cell apoptosis in GBM cells in vitro. Consistently, the in vivo experiments supported that LINC00324 ablation also restrained tumorigenesis in nude mice models. The following mechanism studies showed that LINC00324 sponged miR-16-5p to upregulate SEPT2 in a competing endogenous RNA-dependent manner, and the inhibitory effects of LINC00324 downregulation on the malignant characteristics of GBM cells were abrogated by both miR-16-5p ablation and SEPT2 overexpression.

Conclusion: LINC00324 promotes the malignant phenotypes in GBM via targeting the miR-16-5p/SEPT2 axis, and the study provides novel biomarkers for GBM diagnosis and therapy

About the authors

Bo Chen

Department of Neurosurgery, Shaanxi Provincial People's Hospital

Email: info@benthamscience.net

Pengzhen Lin

Department of Neurosurgery, Shaanxi Provincial People's Hospital

Email: info@benthamscience.net

Nan Li

Department of Neurosurgery, The Affiliated Children Hospital of Xi'an Jiaotong University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ostrom, Q.T.; Bauchet, L.; Davis, F.G.; Deltour, I.; Fisher, J.L.; Langer, C.E.; Pekmezci, M.; Schwartzbaum, J.A.; Turner, M.C.; Walsh, K.M.; Wrensch, M.R.; Barnholtz-Sloan, J.S. The epidemiology of glioma in adults: A "state of the science" review. Neurooncol., 2014, 16(7), 896-913. doi: 10.1093/neuonc/nou087 PMID: 24842956
  2. Chen, R.; Smith-Cohn, M.; Cohen, A.L.; Colman, H. Glioma subclassifications and their clinical significance. Neurotherapeutics, 2017, 14(2), 284-297. doi: 10.1007/s13311-017-0519-x PMID: 28281173
  3. Soomro, S.H.; Ting, L.R.; Qing, Y.Y.; Ren, M. Molecular biology of glioblastoma: Classification and mutational locations. J. Pak. Med. Assoc., 2017, 67(9), 1410-1414. PMID: 28924284
  4. Huang, T.; Xu, T.; Wang, Y.; Zhou, Y.; Yu, D.; Wang, Z.; He, L.; Chen, Z.; Zhang, Y.; Davidson, D.; Dai, Y.; Hang, C.; Liu, X.; Yan, C. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy, 2021, 17(11), 3592-3606. doi: 10.1080/15548627.2021.1885203 PMID: 33629929
  5. Li, D.; Patel, C.B.; Xu, G.; Iagaru, A.; Zhu, Z.; Zhang, L.; Cheng, Z. Visualization of diagnostic and therapeutic targets in glioma with molecular imaging. Front. Immunol., 2020, 11, 592389. doi: 10.3389/fimmu.2020.592389 PMID: 33193439
  6. Xiao, Y.; Zhu, Z.; Li, J.; Yao, J.; Jiang, H.; Ran, R.; Li, X.; Li, Z. Expression and prognostic value of long non-coding RNA H19 in glioma via integrated bioinformatics analyses. Aging, 2020, 12(4), 3407-3430. doi: 10.18632/aging.102819 PMID: 32081833
  7. Ohgaki, H.; Kleihues, P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol., 2007, 170(5), 1445-1453. doi: 10.2353/ajpath.2007.070011 PMID: 17456751
  8. Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev., 2019, 80, 101896. doi: 10.1016/j.ctrv.2019.101896 PMID: 31541850
  9. Peng, W-X.; Koirala, P.; Mo, Y-Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene, 2017, 36(41), 5661-5667. doi: 10.1038/onc.2017.184 PMID: 28604750
  10. Eptaminitaki, G.C.; Wolff, N.; Stellas, D.; Sifakis, K.; Baritaki, S. Long non-coding RNAs (lncRNAs) in response and resistance to cancer immunosurveillance and immunotherapy. Cells, 2021, 10(12), 3313. doi: 10.3390/cells10123313 PMID: 34943820
  11. Luo, Y.; Zheng, S.; Wu, Q.; Wu, J.; Zhou, R.; Wang, C.; Wu, Z.; Rong, X.; Huang, N.; Sun, L.; Bin, J.; Liao, Y.; Shi, M.; Liao, W. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy, 2021, 17(12), 4083-4101. doi: 10.1080/15548627.2021.1901204 PMID: 33764843
  12. Wu, Z.; Lu, Z.; Li, L.; Ma, M.; Long, F.; Wu, R.; Huang, L.; Chou, J.; Yang, K.; Zhang, Y.; Li, X.; Hu, G.; Zhang, Y.; Lin, C. Identification and validation of ferroptosis-related LncRNA signatures as a novel prognostic model for colon cancer. Front. Immunol., 2022, 12, 783362. doi: 10.3389/fimmu.2021.783362 PMID: 35154072
  13. Zhang, M.; Lin, B.; Liu, Y.; Huang, T.; Chen, M.; Lian, D.; Deng, S.; Zhuang, C. LINC00324 affects non-small cell lung cancer cell proliferation and invasion through regulation of the miR-139-5p/IGF1R axis. Mol. Cell. Biochem., 2020, 473(1-2), 193-202. doi: 10.1007/s11010-020-03819-2 PMID: 32734536
  14. Ni, X.; Xie, J.K.; Wang, H.; Song, H.R. Knockdown of long non-coding RNA LINC00324 inhibits proliferation, migration and invasion of colorectal cancer cell via targeting miR-214-3p. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(24), 10740-10750. PMID: 31858541
  15. Dong, Y.; Wan, G.; Yan, P.; Qian, C.; Li, F.; Peng, G. Long noncoding RNA LINC00324 promotes retinoblastoma progression by acting as a competing endogenous RNA for microRNA-769-5p, thereby increasing STAT3 expression. Aging, 2020, 12(9), 7729-7746. doi: 10.18632/aging.103075 PMID: 32369777
  16. Meng, W.; Li, Y.; Chai, B.; Liu, X.; Ma, Z. miR-199a: A tumor suppressor with noncoding RNA network and therapeutic candidate in lung cancer. Int. J. Mol. Sci., 2022, 23(15), 8518. doi: 10.3390/ijms23158518 PMID: 35955652
  17. Pirlog, R.; Drula, R.; Nutu, A.; Calin, G.A.; Berindan-Neagoe, I. The roles of the colon cancer associated transcript 2 (CCAT2) long non-coding RNA in cancer: A comprehensive characterization of the tumorigenic and molecular functions. Int. J. Mol. Sci., 2021, 22(22), 12491. doi: 10.3390/ijms222212491 PMID: 34830370
  18. Yin, J.; Zeng, A.; Zhang, Z.; Shi, Z.; Yan, W.; You, Y. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBio. Med., 2019, 42, 238-251. doi: 10.1016/j.ebiom.2019.03.016 PMID: 30917935
  19. Li, H.; Chen, L.; Li, J.; Zhou, Q.; Huang, A.; Liu, W.; Wang, K.; Gao, L.; Qi, S.; Lu, Y. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J. Hematol. Oncol., 2018, 11(1), 70. doi: 10.1186/s13045-018-0618-0 PMID: 29843746
  20. Wang, R.; Zhang, S.; Chen, X.; Li, N.; Li, J.; Jia, R.; Pan, Y.; Liang, H. EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol. Cancer, 2018, 17(1), 166. doi: 10.1186/s12943-018-0911-0 PMID: 30470262
  21. Wei, J.; Jia, A.; Ma, L.; Wang, Y.; Qiu, L.; Xiao, B. MicroRNA-16 inhibits the proliferation and metastasis of human lung cancer cells by modulating the expression of YAP1. J. BUON, 2020, 25(2), 862-868.
  22. Tang, X.; Jin, L.; Cao, P.; Cao, K.; Huang, C.; Luo, Y.; Ma, J.; Shen, S.; Tan, M.; Li, X.; Zhou, M. MicroRNA-16 sensitizes breast cancer cells to paclitaxel through suppression of IKBKB expression. Oncotarget, 2016, 7(17), 23668-23683. doi: 10.18632/oncotarget.8056 PMID: 26993770
  23. Jiang, Q.Q.; Liu, B.; Yuan, T. MicroRNA-16 inhibits bladder cancer proliferation by targeting Cyclin D1. APJCP, 2013, 14(7), 4127-4130. PMID: 23991964
  24. Wang, H.; Pan, J.; Yu, L.; Meng, L.; Liu, Y.; Chen, X. MicroRNA-16 inhibits glioblastoma growth in orthotopic model by targeting Cyclin D1 and WIP1. OncoTargets Ther., 2020, 13, 10807-10816. doi: 10.2147/OTT.S250369 PMID: 33122919
  25. Wang, F.; Yang, L.; Sun, J.; Zheng, J.; Shi, L.; Zhang, G.; Cui, N. Tumor suppressors microRNA-302d and microRNA-16 inhibit human glioblastoma multiforme by targeting NF-κB and FGF2. Mol. Biosyst., 2017, 13(7), 1345-1354. doi: 10.1039/C7MB00139H PMID: 28497156
  26. Krell, A.; Wolter, M.; Stojcheva, N.; Hertler, C.; Liesenberg, F.; Zapatka, M.; Weller, M.; Malzkorn, B.; Reifenberger, G. MiR-16-5p is frequently down-regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis and response to cytotoxic therapy. Neuropathol. Appl. Neurobiol., 2019, 45(5), 441-458. PMID: 30548945
  27. Chen, F.; Chen, L.; He, H.; Huang, W.; Zhang, R.; Li, P.; Meng, Y.; Jiang, X. Up-regulation of microRNA-16 in glioblastoma inhibits the function of endothelial cells and tumor angiogenesis by targeting Bmi-1. Anticancer. Agents Med. Chem., 2016, 16(5), 609-620. doi: 10.2174/1871520615666150916092251 PMID: 26373393
  28. Yang, T.Q.; Lu, X.J.; Wu, T.F.; Ding, D.D.; Zhao, Z.H.; Chen, G.L.; Xie, X.S.; Li, B.; Wei, Y.X.; Guo, L.C.; Zhang, Y.; Huang, Y.L.; Zhou, Y.X.; Du, Z.W. Micro RNA ‐16 inhibits glioma cell growth and invasion through suppression of BCL 2 and the nuclear factor‐κB1/MMP 9 signaling pathway. Cancer Sci., 2014, 105(3), 265-271. doi: 10.1111/cas.12351 PMID: 24418124
  29. Braga, E.A.; Fridman, M.V.; Burdennyy, A.M.; Filippova, E.A.; Loginov, V.I.; Pronina, I.V.; Dmitriev, A.A.; Kushlinskii, N.E. Regulation of the key epithelial cancer suppressor miR-124 function by competing endogenous RNAs. Int. J. Mol. Sci., 2022, 23(21), 13620. doi: 10.3390/ijms232113620 PMID: 36362406
  30. Liu, Z.Q.; Cheng, M.; Fu, F.; Li, R.; Han, J.; Yang, X.; Deng, Q.; Li, L.S.; Lei, T.Y.; Li, D.Z.; Liao, C. Identification of differential microRNAs and messenger RNAs resulting from ASXL transcriptional regulator 3 knockdown during during heart development. Bioengineered, 2022, 13(4), 9948-9961. doi: 10.1080/21655979.2022.2062525 PMID: 35435106
  31. Su, L.; Li, R.; Zhang, Z.; Liu, J.; Du, J.; Wei, H. Identification of altered exosomal microRNAs and mRNAs in Alzheimer's disease. Ageing Res. Rev., 2022, 73, 101497. doi: 10.1016/j.arr.2021.101497 PMID: 34710587
  32. Zhang, W.; Liao, K.; Liu, D. MicroRNA 744 5p is downregulated in colorectal cancer and targets SEPT2 to suppress the malignant phenotype. Mol. Med. Rep., 2020, 23(1), 54. doi: 10.3892/mmr.2020.11692 PMID: 33200802
  33. Tian, Q.; Yan, X.; Yang, L.; Liu, Z.; Yuan, Z.; Shen, Z.; Zhang, Y. lncRNA NORAD promotes hepatocellular carcinoma progression via regulating miR-144-3p/SEPT2. Am. J. Transl. Res., 2020, 12(5), 2257-2266. PMID: 32509217
  34. Cao, L.; Shao, Z.; Liang, H.; Zhang, D.; Yang, X.; Jiang, X.; Xue, P. Activation of peroxisome proliferator-activated receptor-γ (PPARγ) inhibits hepatoma cell growth via downregulation of SEPT2 expression. Cancer Lett., 2015, 359(1), 127-135. doi: 10.1016/j.canlet.2015.01.004 PMID: 25592041
  35. He, H.; Li, J.; Xu, M.; Kan, Z.; Gao, Y.; Yuan, C. Expression of septin 2 and association with clinicopathological parameters in colorectal cancer. Oncol. Lett., 2019, 18(3), 2376-2383. doi: 10.3892/ol.2019.10528 PMID: 31402940
  36. Xu, D.; Liu, A.; Wang, X.; Chen, Y.; Shen, Y.; Tan, Z.; Qiu, M. Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells. Cell Death Dis., 2018, 9(5), 514. doi: 10.1038/s41419-018-0547-4 PMID: 29724999
  37. de Lara, J.C.F.; Arzate-Mejía, R.G.; Recillas-Targa, F. Enhancer RNAs: Insights into their biological role. Epigenet. Insights, 2019, 12. doi: 10.1177/2516865719846093 PMID: 31106290
  38. Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261. doi: 10.1038/nm.3981 PMID: 26540387
  39. Adnane, S.; Marino, A.; Leucci, E. LncRNAs in human cancers: Signal from noise. Trends Cell Biol., 2022, 32(7), 565-573. doi: 10.1016/j.tcb.2022.01.006 PMID: 35168846
  40. Beylerli, O.; Gareev, I.; Sufianov, A.; Ilyasova, T.; Guang, Y. Long noncoding RNAs as promising biomarkers in cancer. Noncoding RNA Res., 2022, 7(2), 66-70. doi: 10.1016/j.ncrna.2022.02.004 PMID: 35310927
  41. Kan, R.L.; Chen, J.; Sallam, T. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends Genet., 2022, 38(2), 182-193. doi: 10.1016/j.tig.2021.06.014 PMID: 34294427
  42. Ouyang, J.; Zhong, Y.; Zhang, Y.; Yang, L.; Wu, P.; Hou, X.; Xiong, F.; Li, X.; Zhang, S.; Gong, Z.; He, Y.; Tang, Y.; Zhang, W.; Xiang, B.; Zhou, M.; Ma, J.; Li, Y.; Li, G.; Zeng, Z.; Guo, C.; Xiong, W. Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br. J. Cancer, 2022, 126(8), 1113-1124. doi: 10.1038/s41416-021-01600-w PMID: 34750493
  43. Xie, W.; Chu, M.; Song, G.; Zuo, Z.; Han, Z.; Chen, C.; Li, Y.; Wang, Z. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin. Cancer Biol., 2022, 83, 303-318. doi: 10.1016/j.semcancer.2020.11.004 PMID: 33207266
  44. Xie, Z.; Zhong, C.; Shen, J.; Jia, Y.; Duan, S. LINC00963: A potential cancer diagnostic and therapeutic target. Biomed. Pharmacother., 2022, 150, 113019. doi: 10.1016/j.biopha.2022.113019
  45. Zhong, C.; Xie, Z.; Shen, J.; Jia, Y.; Duan, S. LINC00665: An emerging biomarker for cancer diagnostics and therapeutics. Cells, 2022, 11(9), 1540. doi: 10.3390/cells11091540 PMID: 35563845
  46. Zhong, C.; Xie, Z.; Zeng, L.; Yuan, C.; Duan, S. MIR4435-2HG is a potential pan-cancer biomarker for diagnosis and prognosis. Front. Immunol., 2022, 13, 855078. doi: 10.3389/fimmu.2022.855078 PMID: 35784328
  47. Wu, S.; Gu, Z.; Wu, Y.; Wu, W.; Mao, B.; Zhao, S. LINC00324 accelerates the proliferation and migration of osteosarcoma through regulating WDR66. J. Cell. Physiol., 2020, 235(1), 339-348. doi: 10.1002/jcp.28973 PMID: 31225659
  48. Liu, Y.; Zhang, Y.; Xie, J.; Bao, W.; Xie, B.; Zhou, J. Correlation analysis between LINC00324 and immunophenotype in peripheral blood leukocytes in patients with acute myeloid leukemia. Xi bao yu fen zi mian yi xue za zhi, 2019, 35(9), 832-837.
  49. Li, N.; Zhan, X. Identification of clinical trait-related lncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer. EPMA J., 2019, 10(3), 273-290. doi: 10.1007/s13167-019-00175-0 PMID: 31462944
  50. Li, H.; An, X.; Li, Q.; Yu, H.; Li, Z. Construction and analysis of competing endogenous RNA network of MCF 7 breast cancer cells based on the inhibitory effect of 6 thioguanine on cell proliferation. Oncol. Lett., 2020, 21(2), 104. doi: 10.3892/ol.2020.12365 PMID: 33376537
  51. Chen, M.; Zhang, M.; Xie, L.; Wu, S.; Zhong, Y. LINC00324 facilitates cell proliferation through competing for miR 214 5p in immature ovarian teratocarcinoma. Int. J. Mol. Med., 2020, 47(1), 397-407. doi: 10.3892/ijmm.2020.4800 PMID: 33416104
  52. Akhbari, M.H.; Zafari, Z.; Sheykhhasan, M. Competing endogenous RNAs (ceRNAs) in colorectal cancer: A review. Expert Rev. Mol. Med., 2022, 24, e27. doi: 10.1017/erm.2022.21 PMID: 35748050
  53. Basera, A.; Hull, R.; Demetriou, D.; Bates, D.O.; Kaufmann, A.M.; Dlamini, Z.; Marima, R. Competing endogenous RNA (ceRNA) networks and splicing switches in cervical cancer: HPV oncogenesis, clinical significance and therapeutic opportunities. Microorganisms, 2022, 10(9), 1852. doi: 10.3390/microorganisms10091852 PMID: 36144454
  54. Liu, Y.; Khan, S.; Li, L.; Ten Hagen, T.L.M.; Falahati, M. Molecular mechanisms of thyroid cancer: A competing endogenous RNA (ceRNA) point of view. Biomedic. pharmacother., 2022, 146, 112251.
  55. Qi, X.; Chen, X.; Zhao, Y.; Chen, J.; Niu, B.; Shen, B. Prognostic roles of ceRNA network-based signatures in gastrointestinal cancers. Front. Oncol., 2022, 12. doi: 10.3389/fonc.2022.921194 PMID: 35924172
  56. Shen, J.; Liang, C.; Su, X.; Wang, Q.; Ke, Y.; Fang, J.; Zhang, D.; Duan, S. Dysfunction and ceRNA network of the tumor suppressor miR-637 in cancer development and prognosis. Biomark. Res., 2022, 10(1), 72. doi: 10.1186/s40364-022-00419-8 PMID: 36175921
  57. Ergun, S.; Güney, S.; Temiz, E.; Petrovic, N.; Gunes, S. Significance of miR-15a-5p and CNKSR3 as novel prognostic biomarkers in non-small cell lung cancer. Anticancer. Agents Med. Chem., 2019, 18(12), 1695-1701. doi: 10.2174/1871520618666180718100656 PMID: 30019650
  58. Wang, J.Y.; Yang, Y.; Ma, Y.; Wang, F.; Xue, A.; Zhu, J. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomedic. pharmacother., 2020, 121, 109627. doi: 10.1016/j.biopha.2019.109627
  59. Wang, L.; Cho, K.B.; Li, Y.; Tao, G.; Xie, Z.; Guo, B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol. Sci., 2019, 20(22), 5758. doi: 10.3390/ijms20225758 PMID: 31744051
  60. Zhou, R.S.; Zhang, E.X.; Sun, Q.F.; Ye, Z.J.; Liu, J.W.; Zhou, D.H.; Tang, Y. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer, 2019, 19(1), 779. doi: 10.1186/s12885-019-5983-8 PMID: 31391008
  61. Zhu, P.; He, F.; Hou, Y.; Tu, G.; Li, Q.; Jin, T.; Zeng, H.; Qin, Y.; Wan, X.; Qiao, Y.; Qiu, Y.; Teng, Y.; Liu, M. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene, 2021, 40(9), 1609-1627. doi: 10.1038/s41388-020-01638-9 PMID: 33469161
  62. Zeng, X.; Xiao, J.; Bai, X.; Liu, Y.; Zhang, M.; Liu, J.; Lin, Z.; Zhang, Z. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol. Res. Pract., 2022, 238, 154030. doi: 10.1016/j.prp.2022.154030 PMID: 36116329
  63. Zhang, M.; Guo, J.; Liu, L.; Huang, M.; Li, Y.; Bennett, S.; Xu, J.; Zou, J. The role of long non-coding RNA, nuclear enriched abundant transcript 1 (NEAT1) in cancer and other pathologies. Biochem. Genet., 2022, 60(3), 843-867. doi: 10.1007/s10528-021-10138-8 PMID: 34689290
  64. Zhang, Q.; Kang, L.; Li, X.; Li, Z.; Wen, S.; Fu, X. Bioinformatics analysis predicts hsa_circ_0026337/miR-197-3p as a potential oncogenic ceRNA network for non-small cell lung cancers. Anticancer. Agents Med. Chem., 2022, 22(5), 874-886. doi: 10.2174/1871520621666210712090721 PMID: 34254931
  65. Cai, G.; Sun, M.; Li, X.; Zhu, J. Construction and characterization of rectal cancer‐related lncRNA‐mRNA ceRNA network reveals prognostic biomarkers in rectal cancer. IET Syst. Biol., 2021, 15(6), 192-204. doi: 10.1049/syb2.12035 PMID: 34613665
  66. Hu, B.; Ma, X.; Fu, P.; Sun, Q.; Tang, W.; Sun, H.; Yang, Z.; Yu, M.; Zhou, J.; Fan, J.; Xu, Y. The mRNA-miRNA-lncRNA regulatory network and factors associated with prognosis prediction of hepatocellular carcinoma. Genomics Proteomics Bioinformatics, 2021, 19(6), 913-925. doi: 10.1016/j.gpb.2021.03.001 PMID: 33741523
  67. Huang, Y.; Wang, X.; Zheng, Y.; Chen, W.; Zheng, Y.; Li, G.; Lou, W.; Wang, X. Construction of an mRNA-miRNA-lncRNA network prognostic for triple-negative breast cancer. Aging, 2021, 13(1), 1153-1175. doi: 10.18632/aging.202254 PMID: 33428596
  68. Li, S.; Li, Y.; Chen, B.; Zhao, J.; Yu, S.; Tang, Y.; Zheng, Q.; Li, Y.; Wang, P.; He, X.; Huang, S. exoRBase: A database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res., 2018, 46(D1), D106-D112. doi: 10.1093/nar/gkx891 PMID: 30053265
  69. Liu, H.; Zhang, Q.; Lou, Q.; Zhang, X.; Cui, Y.; Wang, P.; Yang, F.; Wu, F.; Wang, J.; Fan, T.; Li, S. Differential analysis of lncRNA, miRNA and mRNA expression profiles and the prognostic value of lncRNA in esophageal cancer. Pathol. Oncol. Res., 2020, 26(2), 1029-1039. doi: 10.1007/s12253-019-00655-8 PMID: 30972633
  70. Wang, J.D.; Zhou, H.S.; Tu, X.X.; He, Y.; Liu, Q.F.; Liu, Q.; Long, Z.J. Prediction of competing endogenous RNA coexpression network as prognostic markers in AML. Aging, 2019, 11(10), 3333-3347. doi: 10.18632/aging.101985 PMID: 31164492
  71. Pan, Z.H.; Guo, X.Q.; Shan, J.; Luo, S.X. LINC00324 exerts tumor-promoting functions in lung adenocarcinoma via targeting miR-615-5p/AKT1 axis. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(23), 8333-8342. PMID: 30556874
  72. Wang, B.; Zhang, Y.; Zhang, H.; Lin, F.; Tan, Q.; Qin, Q.; Bao, W.; Liu, Y.; Xie, J.; Zeng, Q. Long intergenic non-protein coding RNA 324 prevents breast cancer progression by modulating miR-10b-5p. Aging, 2020, 12(8), 6680-6699. doi: 10.18632/aging.103021 PMID: 32305959
  73. Xu, J.; Li, Z.; Su, Q.; Zhao, J.; Ma, J. Suppression of long noncoding RNA LINC00324 restricts cell proliferation and invasion of papillary thyroid carcinoma through downregulation of TRIM29 via upregulating microRNA-195-5p. Aging, 2020, 12(24), 26000-26011. doi: 10.18632/aging.202219 PMID: 33318312
  74. Song, K.; Yu, P.; Zhang, C.; Yuan, Z.; Zhang, H. The LncRNA FGD5‐AS1/miR‐497‐5p axis regulates septin 2 (SEPT2) to accelerate cancer progression and increase cisplatin‐resistance in laryngeal squamous cell carcinoma. Mol. Carcinog., 2021, 60(7), 469-480. doi: 10.1002/mc.23305 PMID: 34003510
  75. Cerveira, N.; Santos, J.; Bizarro, S.; Costa, V.; Ribeiro, F.R.; Lisboa, S.; Correia, C.; Torres, L.; Vieira, J.; Snijder, S.; Mariz, J.M.; Norton, L.; Mellink, C.H.; Buijs, A.; Teixeira, M.R. Both SEPT2 and MLL are down-regulated in MLL-SEPT2therapy-related myeloid neoplasia. BMC Cancer, 2009, 9(1), 147. doi: 10.1186/1471-2407-9-147 PMID: 19445675
  76. Kim, D.S.; Hubbard, S.L.; Peraud, A.; Salhia, B.; Sakai, K.; Rutka, J.T. Analysis of mammalian septin expression in human malignant brain tumors. Neoplasia, 2004, 6(2), 168-178. doi: 10.1593/neo.03310 PMID: 15140406

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bentham Science Publishers