Simvastatin Enhanced Anti-tumor Effects of Bevacizumab against Lung Adenocarcinoma A549 Cells via Abating HIF-1α-Wnt/β-Catenin Signaling Pathway
- Authors: Tu X.1, Zhang J.2, Yuan W.3, Wu X.1, Xu Z.1, Qing C.1
-
Affiliations:
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People's Hospital
- Department of Gastroenterology, The Second People's Hospital of Yibin
- Department of Neurology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People's Hospital
- Issue: Vol 23, No 19 (2023)
- Pages: 2083-2094
- Section: Oncology
- URL: https://genescells.com/1871-5206/article/view/694377
- DOI: https://doi.org/10.2174/1871520623666230816090914
- ID: 694377
Cite item
Full Text
Abstract
Background: Bevacizumab increased hypoxia-inducible factor (HIF-1α) expression attenuates its antitumor effect. Simvastatin can reduce the expression of HIF-1α to exert a tumor-suppressive effect in many in vitro experiments. Therefore, this study aimed to determine whether simvastatin could strengthen the anti-tumor activity of bevacizumab in lung adenocarcinoma.
Objective: To determine whether simvastatin could strengthen the anti-tumor activity of bevacizumab in lung adenocarcinoma.
Methods: The changes in the biological behavior of A549 cells treated with different drugs were determined through colony forming assay, Cell Counting Assay-8 (CCK-8), transwell assay, wound healing assay, and flow cytometry. The expressions of pathway-related factors HIF-1α and β-Catenin were determined via qRT-PCR and western blotting. The expressions of proliferation-related proteins, invasion-related proteins, and apoptosis-related proteins were detected by western blotting. In addition, a xenograft non-small cell lung cancer model in nude mice was used to explore in vivo tumor growth.
Results: We found that simvastatin combined with bevacizumab synergistically suppressed the proliferation, migration, and invasion of A549 cells while promoting their apoptosis. As demonstrated by qRT-PCR and western blotting experiments, the bevacizumab group displayed a higher expression of pathway-related factors HIF-1α and β-Catenin than the control groups, however simvastatin group showed the opposite trend. Its combination with bevacizumab induced elevation of HIF-1α and β-catenin expressions. During in vivo experiments, simvastatin inhibited tumor growth, and in comparison, the inhibitory effects of its combination with bevacizumab were stronger.
Conclusion: Based on our findings, simvastatin may affect the biological responses of bevacizumab on A549 cells by restraining the HIF-1α-Wnt/β-catenin signaling pathway, thus representing a novel and effective combination therapy that can be potentially applied in a clinical therapy for lung adenocarcinoma.
Keywords
About the authors
Xin Tu
Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People's Hospital
Email: info@benthamscience.net
Jian Zhang
Department of Gastroenterology, The Second People's Hospital of Yibin
Email: info@benthamscience.net
Wei Yuan
Department of Neurology, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People's Hospital
Email: info@benthamscience.net
Xia Wu
Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People's Hospital
Email: info@benthamscience.net
Zhi Xu
Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People's Hospital
Email: info@benthamscience.net
Cuo Qing
Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People's Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132. doi: 10.3322/caac.21338 PMID: 26808342
- Chen, Z.; Fillmore, C.M.; Hammerman, P.S.; Kim, C.F.; Wong, K.K. Non-small-cell lung cancers: A heterogeneous set of diseases. Nat. Rev. Cancer, 2014, 14(8), 535-546. doi: 10.1038/nrc3775 PMID: 25056707
- Schwartzberg, L.; Korytowsky, B.; Penrod, J.R.; Zhang, Y.; Le, T.K.; Batenchuk, C.; Krug, L. Real-world clinical impact of immune checkpoint inhibitors in patients with advanced/metastatic nonsmall cell lung cancer after platinum chemotherapy. Clin. Lung Cancer, 2019, 20(4), 287-296.e4. doi: 10.1016/j.cllc.2019.04.004 PMID: 31130450
- Chen, J.H.; Yang, J.L.; Chou, C.Y.; Wang, J.Y.; Hung, C.C. Indirect comparison of efficacy and safety between immune checkpoint inhibitors and antiangiogenic therapy in advanced nonsmall-cell lung cancer. Sci. Rep., 2018, 8(1), 9686. doi: 10.1038/s41598-018-27994-x PMID: 29946182
- Reck, M.; Garassino, M.C.; Imbimbo, M.; Shepherd, F.A.; Socinski, M.A.; Shih, J.Y.; Tsao, A.; Lee, P.; Winfree, K.B.; Sashegyi, A.; Cheng, R.; Varea, R.; Levy, B.; Garon, E. Antiangiogenic therapy for patients with aggressive or refractory advanced non-small cell lung cancer in the second-line setting. Lung Cancer, 2018, 120, 62-69. doi: 10.1016/j.lungcan.2018.03.025 PMID: 29748017
- Alevizakos, M.; Kaltsas, S.; Syrigos, K.N. The VEGF pathway in lung cancer. Cancer Chemother. Pharmacol., 2013, 72(6), 1169-1181. doi: 10.1007/s00280-013-2298-3 PMID: 24085262
- Blagosklonny, M.V. Antiangiogenic therapy and tumor progression. Cancer Cell, 2004, 5(1), 13-17. doi: 10.1016/S1535-6108(03)00336-2 PMID: 14749122
- De Francesco, E.M.; Sims, A.H.; Maggiolini, M.; Sotgia, F.; Lisanti, M.P.; Clarke, R.B. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment. Breast Cancer Res., 2017, 19(1), 129. doi: 10.1186/s13058-017-0923-5 PMID: 29212519
- Rapisarda, A.; Melillo, G. Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat. Rev. Clin. Oncol., 2012, 9(7), 378-390. doi: 10.1038/nrclinonc.2012.64 PMID: 22525710
- Mazumdar, J.; O'Brien, W.T.; Johnson, R.S.; LaManna, J.C.; Chavez, J.C.; Klein, P.S.; Simon, M.C. O2 regulates stem cells through Wnt/β-catenin signalling. Nat. Cell Biol., 2010, 12(10), 1007-1013. doi: 10.1038/ncb2102 PMID: 20852629
- Lv, Z.; Liu, R.D.; Chen, X.Q.; Wang, B.; Li, L.F.; Guo, Y.S.; Chen, X.J.; Ren, X.Q. HIF 1α promotes the stemness of oesophageal squamous cell carcinoma by activating the Wnt/β catenin pathway. Oncol. Rep., 2019, 42(2), 726-734. doi: 10.3892/or.2019.7203 PMID: 31233197
- Wang, X.; Yu, Z.; Wang, C.; Cheng, W.; Tian, X.; Huo, X.; Wang, Y.; Sun, C.; Feng, L.; Xing, J.; Lan, Y.; Sun, D.; Hou, Q.; Zhang, B.; Ma, X.; Zhang, B. Alantolactone, a natural sesquiterpene lactone, has potent antitumor activity against glioblastoma by targeting IKKβ kinase activity and interrupting NF-κB/COX-2-mediated signaling cascades. J. Exp. Clin. Cancer Res., 2017, 36(1), 93. doi: 10.1186/s13046-017-0563-8 PMID: 28701209
- McIntyre, A.; Harris, A.L. Metabolic and hypoxic adaptation to anti‐angiogenic therapy: A target for induced essentiality. EMBO Mol. Med., 2015, 7(4), 368-379. doi: 10.15252/emmm.201404271 PMID: 25700172
- Vasudev, N.S.; Goh, V.; Juttla, J.K.; Thompson, V.L.; Larkin, J.M.G.; Gore, M.; Nathan, P.D.; Reynolds, A.R. Changes in tumour vessel density upon treatment with anti-angiogenic agents: Relationship with response and resistance to therapy. Br. J. Cancer, 2013, 109(5), 1230-1242. doi: 10.1038/bjc.2013.429 PMID: 23922108
- Huang, W.; Zhang, C.; Cui, M.; Niu, J.; Ding, W. Inhibition of bevacizumab-induced epithelial-mesenchymal transition by BATF2 overexpression involves the suppression of Wnt/β-catenin signaling in glioblastoma cells. Anticancer Res., 2017, 37(8), 4285-4294. doi: 10.21873/anticanres.11821 PMID: 28739720
- Xie, W.; Zhao, H.; Wang, F.; Wang, Y.; He, Y.; Wang, T.; Zhang, K.; Yang, H.; Zhou, Z.; Shi, H.; Wang, J.; Huang, G. A novel humanized Frizzled-7-targeting antibody enhances antitumor effects of Bevacizumab against triple-negative breast cancer via blocking Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res., 2021, 40(1), 30. doi: 10.1186/s13046-020-01800-x PMID: 33436039
- Shepherd, J.; Cobbe, S.M.; Ford, I.; Isles, C.G.; Lorimer, A.R.; Macfarlane, P.W.; McKillop, J.H.; Packard, C.J. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N. Engl. J. Med., 1995, 333(20), 1301-1308. doi: 10.1056/NEJM199511163332001 PMID: 7566020
- Fujikake, K.; Kajiyama, H.; Yoshihara, M.; Nishino, K.; Yoshikawa, N.; Utsumi, F.; Suzuki, S.; Niimi, K.; Sakata, J.; Mitsui, H.; Shibata, K.; Senga, T.; Kikkawa, F. A novel mechanism of neovascularization in peritoneal dissemination via cancer-associated mesothelial cells affected by TGF-β derived from ovarian cancer. Oncol. Rep., 2017, 39(1), 193-200. doi: 10.3892/or.2017.6104 PMID: 29192324
- Murai, T. Cholesterol lowering: Role in cancer prevention and treatment. Biol. Chem., 2015, 396(1), 1-11. doi: 10.1515/hsz-2014-0194 PMID: 25205720
- Lee, Y.; Lee, K.H.; Lee, G.K.; Lee, S.H.; Lim, K.Y.; Joo, J.; Go, Y.J.; Lee, J.S.; Han, J.Y. Randomized phase ii study of afatinib plus simvastatin versus afatinib alone in previously treated patients with advanced nonadenocarcinomatous non-small cell lung cancer. Cancer Res. Treat., 2017, 49(4), 1001-1011. doi: 10.4143/crt.2016.546 PMID: 28111428
- Feng, J.; Dai, W.; Mao, Y.; Wu, L.; Li, J.; Chen, K.; Yu, Q.; Kong, R.; Li, S.; Zhang, J.; Ji, J.; Wu, J.; Mo, W.; Xu, X.; Guo, C. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J. Exp. Clin. Cancer Res., 2020, 39(1), 24. doi: 10.1186/s13046-020-1528-x PMID: 32000827
- Chou, T.C.; Martin, N. CompuSyn software. CompuSyn for drug combinations: PC software and user's guide: A computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. ComboSyn Inc., Paramus, NJ. 2005. Available from: https://www.combosyn.com
- Chou, T.C.; Talalay, P. Generalized equations for the analysis of inhibitions of Michaelis-Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Eur. J. Biochem., 1981, 115(1), 207-216. doi: 10.1111/j.1432-1033.1981.tb06218.x PMID: 7227366
- Welti, J.; Loges, S.; Dimmeler, S.; Carmeliet, P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Invest., 2013, 123(8), 3190-3200. doi: 10.1172/JCI70212 PMID: 23908119
- Kerbel, R.; Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer, 2002, 2(10), 727-739. doi: 10.1038/nrc905 PMID: 12360276
- Lu, X.; Kang, Y. Hypoxia and hypoxia-inducible factors: Master regulators of metastasis. Clin. Cancer Res., 2010, 16(24), 5928-5935. doi: 10.1158/1078-0432.CCR-10-1360 PMID: 20962028
- Ai, Z.; Lu, Y.; Qiu, S.; Fan, Z. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism. Cancer Lett., 2016, 373(1), 36-44. doi: 10.1016/j.canlet.2016.01.009 PMID: 26801746
- Tong, D.; Liu, Q.; Liu, G.; Yuan, W.; Wang, L.; Guo, Y.; Lan, W.; Zhang, D.; Dong, S.; Wang, Y.; Xiao, H.; Mu, J.; Mao, C.; Wong, J.; Jiang, J. The HIF/PHF8/AR axis promotes prostate cancer progression. Oncogenesis, 2016, 5(12), e283. doi: 10.1038/oncsis.2016.74 PMID: 27991916
- Zhang, Y.; Bian, Y.; Wang, Y.; Wang, Y.; Duan, X.; Han, Y.; Zhang, L.; Wang, F.; Gu, Z.; Qin, Z. HIF‐1α is necessary for activation and tumour‐promotion effect of cancer‐associated fibroblasts in lung cancer. J. Cell. Mol. Med., 2021, 25(12), 5457-5469. doi: 10.1111/jcmm.16556 PMID: 33943003
- Valenta, T.; Hausmann, G.; Basler, K. The many faces and functions of β-catenin. EMBO J., 2012, 31(12), 2714-2736. doi: 10.1038/emboj.2012.150 PMID: 22617422
- Pastushenko, I.; Brisebarre, A.; Sifrim, A.; Fioramonti, M.; Revenco, T.; Boumahdi, S.; Van Keymeulen, A.; Brown, D.; Moers, V.; Lemaire, S.; De Clercq, S.; Minguijón, E.; Balsat, C.; Sokolow, Y.; Dubois, C.; De Cock, F.; Scozzaro, S.; Sopena, F.; Lanas, A.; D'Haene, N.; Salmon, I.; Marine, J.C.; Voet, T.; Sotiropoulou, P.A.; Blanpain, C. Identification of the tumour transition states occurring during EMT. Nature, 2018, 556(7702), 463-468. doi: 10.1038/s41586-018-0040-3 PMID: 29670281
- Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer, 2018, 18(2), 128-134. doi: 10.1038/nrc.2017.118 PMID: 29326430
- Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999. doi: 10.1016/j.cell.2017.05.016 PMID: 28575679
- Han, P.; Li, J.; Zhang, B.; Lv, J.; Li, Y.; Gu, X.; Yu, Z.; Jia, Y.; Bai, X.; Li, L.; Liu, Y.; Cui, B. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol. Cancer, 2017, 16(1), 9. doi: 10.1186/s12943-017-0583-1 PMID: 28086904
- Teng, Y.; Wang, X.; Wang, Y.; Ma, D. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem. Biophys. Res. Commun., 2010, 392(3), 373-379. doi: 10.1016/j.bbrc.2010.01.028 PMID: 20074550
- Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol., 2012, 13(12), 767-779. doi: 10.1038/nrm3470 PMID: 23151663
- Zhou, Y.Y.; Zhu, G.Q.; Wang, Y.; Zheng, J.N.; Ruan, L.Y.; Cheng, Z.; Hu, B.; Fu, S.W.; Zheng, M.H. Systematic review with network meta-analysis: Statins and risk of hepatocellular carcinoma. Oncotarget, 2016, 7(16), 21753-21762. doi: 10.18632/oncotarget.7832 PMID: 26943041
- Ishikawa, S.; Hayashi, H.; Kinoshita, K.; Abe, M.; Kuroki, H.; Tokunaga, R.; Tomiyasu, S.; Tanaka, H.; Sugita, H.; Arita, T.; Yagi, Y.; Watanabe, M.; Hirota, M.; Baba, H. Statins inhibit tumor progression via an enhancer of zeste homolog 2-mediated epigenetic alteration in colorectal cancer. Int. J. Cancer, 2014, 135(11), 2528-2536. doi: 10.1002/ijc.28672 PMID: 24346863
- Cardwell, C.R.; Mc Menamin, Ú.; Hughes, C.M.; Murray, L.J. Statin use and survival from lung cancer: A population-based cohort study. Cancer Epidemiol. Biomarkers Prev., 2015, 24(5), 833-841. doi: 10.1158/1055-9965.EPI-15-0052 PMID: 25934831
- Yu, X.; Pan, Y.; Ma, H.; Li, W. Simvastatin inhibits proliferation and induces apoptosis in human lung cancer cells. Oncol. Res., 2013, 20(8), 351-357. doi: 10.3727/096504013X13657689382897 PMID: 23924855
- Han, J.Y.; Lee, S.H.; Yoo, N.J.; Hyung, L.S.; Moon, Y.J.; Yun, T.; Kim, H.T.; Lee, J.S. A randomized phase II study of gefitinib plus simvastatin Versus gefitinib alone in previously treated patients with advanced non-small cell lung cancer. Clin. Cancer Res., 2011, 17(6), 1553-1560. doi: 10.1158/1078-0432.CCR-10-2525 PMID: 21411446
- Rauca, V.F.; Licarete, E.; Luput, L.; Sesarman, A.; Patras, L.; Bulzu, P.; Rakosy-Tican, E.; Banciu, M. Combination therapy of simvastatin and 5, 6-dimethylxanthenone-4-acetic acid synergistically suppresses the aggressiveness of B16.F10 melanoma cells. PLoS One, 2018, 13(8), e0202827. doi: 10.1371/journal.pone.0202827 PMID: 30138430
- Wang, J.C.; Li, X.X.; Sun, X.; Li, G.Y.; Sun, J.L.; Ye, Y.P.; Cong, L.L.; Li, W.M.; Lu, S.Y.; Feng, J.; Liu, P.J. Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF ‐1α‐induced pro‐angiogenic factor. Cancer Sci., 2018, 109(5), 1627-1637. doi: 10.1111/cas.13570 PMID: 29532562
Supplementary files
