Targeting RSK2 in Cancer Therapy: A Review of Natural Products
- Authors: Wu T.1, Chen Z.1, Liu X.1, Wu X.1, Wang Z.1, Guo W.1
-
Affiliations:
- School of Chemistry and Life Science, Suzhou University of Science and Technology
- Issue: Vol 25, No 1 (2025)
- Pages: 35-41
- Section: Oncology
- URL: https://genescells.com/1871-5206/article/view/694412
- DOI: https://doi.org/10.2174/0118715206329546240830055233
- ID: 694412
Cite item
Full Text
Abstract
P90 ribosomal S6 kinase 2 (RSK2) is an important member of the RSK family, functioning as a kinase enzyme that targets serine and threonine residues and contributes to regulating cell growth. RSK2 comprises two major functional domains: the N-terminal kinase domain (NTKD) and the C-terminal kinase domain (CTKD). RSK2 is situated at the lower end of the Mitogen-activated protein kinases (MAPK) signaling pathway and is phosphorylated by the direct regulation of Extracellular signal-regulating kinase (ERK). RSK2 has been found to play a pivotal role in regulating cell proliferation, apoptosis, metastasis, and invasion in various cancer cells, including breast cancer and melanoma. Consequently, RSK2 has emerged as a potential target for the development of anti-cancer drugs. Presently, several inhibitors are undergoing clinical trials, such as SL0101. Current inhibitors of RSK2 mainly bind to its NTK or CTK domains and inhibit their activity. Natural products serve as an important resource for drug development and screening and with the potential to identify RSK2 inhibitors. This article discusses how RSK2 influences tumor cell proliferation, prevents apoptosis, arrests the cell cycle process, and promotes cancer metastasis through its regulation of downstream pathways or interaction with other biological molecules. Additionally, the paper also covers recent research progress on RSK2 inhibitors and the mechanisms of action of natural RSK2 inhibitors on tumors. This review emphasizes the significance of RSK2 as a potential therapeutic target in cancer and offers a theoretical basis for the clinical application of RSK2 inhibitors.
Keywords
About the authors
Tianhui Wu
School of Chemistry and Life Science, Suzhou University of Science and Technology
Email: info@benthamscience.net
Ziming Chen
School of Chemistry and Life Science, Suzhou University of Science and Technology
Email: info@benthamscience.net
Xin Liu
School of Chemistry and Life Science, Suzhou University of Science and Technology
Email: info@benthamscience.net
Xinyan Wu
School of Chemistry and Life Science, Suzhou University of Science and Technology
Email: info@benthamscience.net
Zhaobo Wang
School of Chemistry and Life Science, Suzhou University of Science and Technology
Email: info@benthamscience.net
Weiqiang Guo
School of Chemistry and Life Science, Suzhou University of Science and Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Romeo, Y.; Zhang, X.; Roux, P.P. Regulation and function of the RSK family of protein kinases. Biochem. J., 2012, 441(2), 553-569. doi: 10.1042/BJ20110289 PMID: 22187936
- Dümmler, B.A.; Hauge, C.; Silber, J.; Yntema, H.G.; Kruse, L.S.; Kofoed, B.; Hemmings, B.A.; Alessi, D.R.; Frödin, M. Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types. J. Biol. Chem., 2005, 280(14), 13304-13314. doi: 10.1074/jbc.M408194200 PMID: 15632195
- Eisinger-Mathason, T.S.K.; Andrade, J.; Lannigan, D.A. RSK in tumorigenesis: Connections to steroid signaling. Steroids, 2010, 75(3), 191-202. doi: 10.1016/j.steroids.2009.12.010 PMID: 20045011
- Jones, S.W.; Erikson, E.; Blenis, J.; Maller, J.L.; Erikson, R.L. A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc. Natl. Acad. Sci. USA, 1988, 85(10), 3377-3381. doi: 10.1073/pnas.85.10.3377 PMID: 3368449
- Fisher, T.L.; Blenis, J. Evidence for two catalytically active kinase domains in pp90rsk. Mol. Cell. Biol., 1996, 16(3), 1212-1219. doi: 10.1128/MCB.16.3.1212 PMID: 8622665
- Arul, N.; Cho, Y.Y. A Rising Cancer Prevention Target of RSK2 in Human Skin Cancer. Front. Oncol., 2013, 3, 201. doi: 10.3389/fonc.2013.00201 PMID: 23936765
- Cho, Y.Y. RSK2 and its binding partners in cell proliferation, transformation and cancer development. Arch. Pharm. Res., 2017, 40(3), 291-303. doi: 10.1007/s12272-016-0880-z PMID: 28013489
- Choi, J.S.; Cho, Y.Y. Novel wiring of the AKT-RSK2 signaling pathway plays an essential role in cancer cell proliferation via a G1/S cell cycle transition. Biochem. Biophys. Res. Commun., 2023, 642, 66-74. doi: 10.1016/j.bbrc.2022.12.048 PMID: 36566564
- Guo, Z.F.; Kong, F.L. Akt regulates RSK2 to alter phosphorylation level of H2A.X in breast cancer. Oncol. Lett., 2021, 21(3), 187. doi: 10.3892/ol.2021.12448 PMID: 33574926
- Wang, L.; Iorio, C.; Yan, K.; Yang, H.; Takeshita, S.; Kang, S.; Neel, B.G.; Yang, W. A ERK/RSK‐mediated negative feedback loop regulates M‐CSF–evoked PI3K/AKT activation in macrophages. FASEB J., 2018, 32(2), 875-887. doi: 10.1096/fj.201700672RR PMID: 29046360
- Kuppusamy, P.; Nagalingam, A.; Muniraj, N.; Saxena, N.K.; Sharma, D. Concomitant activation of ETS-like transcription factor-1 and Death Receptor-5 via extracellular signal-regulated kinase in withaferin A-mediated inhibition of hepatocarcinogenesis in mice. Sci. Rep., 2017, 7(1), 17943. doi: 10.1038/s41598-017-18190-4 PMID: 29263422
- Yoo, S.M.; Lee, C.J.; An, H.J.; Lee, J.Y.; Lee, H.S.; Kang, H.C.; Cho, S.J.; Kim, S.M.; Park, J.; Kim, D.J.; Cho, Y.Y. RSK2-mediated ELK3 activation enhances cell transformation and breast cancer cell growth by regulation of c-fos promoter activity. Int. J. Mol. Sci., 2019, 20(8), 1994. doi: 10.3390/ijms20081994 PMID: 31018569
- Abdulrahman, N.; Siveen, K.S.; Joseph, J.M.; Osman, A.; Yalcin, H.C.; Hasan, A.; Uddin, S.; Mraiche, F. Inhibition of p90 ribosomal S6 kinase potentiates cisplatin activity in A549 human lung adenocarcinoma cells. J. Pharm. Pharmacol., 2020, 72(11), 1536-1545. doi: 10.1111/jphp.13335 PMID: 32667058
- Zheng, K.; Yao, S.; Yao, W.; Li, Q.; Wang, Y.; Zhang, L.; Chen, X.; Xiong, H.; Yuan, X.; Wang, Y.; Zou, Y.; Xiong, H. Association between RSK2 and clinical indexes of primary breast cancer: A meta-analysis based on mRNA microarray data. Front. Genet., 2021, 12, 770134. doi: 10.3389/fgene.2021.770134 PMID: 34790230
- Czaplinska, D.; Mieczkowski, K.; Supernat, A.; Skladanowski, A.C.; Kordek, R.; Biernat, W.; Zaczek, A.J.; Romanska, H.M.; Sadej, R. Interactions between FGFR2 and RSK2—implications for breast cancer prognosis. Tumour Biol., 2016, 37(10), 13721-13731. doi: 10.1007/s13277-016-5266-9 PMID: 27476168
- Li, J.J.; Rhim, J.S.; Schlegel, R.; Vousden, K.H.; Colburn, N.H. Expression of dominant negative Jun inhibits elevated AP-1 and NF-κB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes. Oncogene, 1998, 16(21), 2711-2721. doi: 10.1038/sj.onc.1201798 PMID: 9652737
- Zhang, X.; Guo, Y.; Xiao, T.; Li, J.; Guo, A.; Lei, L.; Jin, C.; Long, Q.; Su, J.; Yin, M.; Liu, H.; Chen, C.; Zhou, Z.; Zhu, S.; Tao, J.; Hu, S.; Chen, X.; Peng, C. CD147 mediates epidermal malignant transformation through the RSK2/AP-1 pathway. J. Exp. Clin. Cancer Res., 2022, 41(1), 246. doi: 10.1186/s13046-022-02427-w PMID: 35964097
- Jiang, D.; Qiu, T.; Peng, J.; Li, S.; Tala; Ren, W.; Yang, C.; Wen, Y.; Chen, C.H.; Sun, J.; Wu, Y.; Liu, R.; Zhou, J.; Wu, K.; Liu, W.; Mao, X.; Zhou, Z.; Chen, C. YB-1 is a positive regulator of KLF5 transcription factor in basal-like breast cancer. Cell Death Differ., 2022, 29(6), 1283-1295. doi: 10.1038/s41418-021-00920-x PMID: 35022570
- Stratford, A.L.; Fry, C.J.; Desilets, C.; Davies, A.H.; Cho, Y.Y.; Li, Y.; Dong, Z.; Berquin, I.M.; Roux, P.P.; Dunn, S.E. Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells. Breast Cancer Res., 2008, 10(6), R99. doi: 10.1186/bcr2202 PMID: 19036157
- She, Q.B.; Ma, W.Y.; Zhong, S.; Dong, Z. Activation of JNK1, RSK2, and MSK1 is involved in serine 112 phosphorylation of Bad by ultraviolet B radiation. J. Biol. Chem., 2002, 277(27), 24039-24048. doi: 10.1074/jbc.M109907200 PMID: 11983683
- Peng, C.; Cho, Y.Y.; Zhu, F.; Li, H.; Li, X.; Xie, H.; Bode, A.M.; Dong, Z. Abstract 4968: Phosphorylation of caspase-8 (Thr263) by ribosomal S6 kinase 2 (RSK2) mediates caspase-8 ubiquitination and stability. Cancer Res., 2012, 72(8_Supplement)(Suppl.), 4968-4968. doi: 10.1158/1538-7445.AM2012-4968
- Lee, C.J.; Lee, M.H.; Lee, J.Y.; Song, J.H.; Lee, H.S.; Cho, Y.Y. RSK2-induced stress tolerance enhances cell survival signals mediated by inhibition of GSK3β activity. Biochem. Biophys. Res. Commun., 2013, 440(1), 112-118. doi: 10.1016/j.bbrc.2013.09.042 PMID: 24055036
- He, Z.; Ma, W.Y.; Liu, G.; Zhang, Y.; Bode, A.M.; Dong, Z. Arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2, and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1. J. Biol. Chem., 2003, 278(12), 10588-10593. doi: 10.1074/jbc.M208581200 PMID: 12529330
- Cho, Y.Y.; He, Z.; Zhang, Y.; Choi, H.S.; Zhu, F.; Choi, B.Y.; Kang, B.S.; Ma, W.Y.; Bode, A.M.; Dong, Z. The p53 protein is a novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction. Cancer Res., 2005, 65(9), 3596-3603. doi: 10.1158/0008-5472.CAN-04-3935 PMID: 15867353
- Lau, A.T.Y.; Lee, S.Y.; Xu, Y.M.; Zheng, D.; Cho, Y.Y.; Zhu, F.; Kim, H.G.; Li, S.Q.; Zhang, Z.; Bode, A.M.; Dong, Z. Phosphorylation of histone H2B serine 32 is linked to cell transformation. J. Biol. Chem., 2011, 286(30), 26628-26637. doi: 10.1074/jbc.M110.215590 PMID: 21646345
- Zhu, F.; Zykova, T.A.; Peng, C.; Zhang, J.; Cho, Y.Y.; Zheng, D.; Yao, K.; Ma, W.Y.; Lau, A.T.Y.; Bode, A.M.; Dong, Z. Phosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation. Cancer Res., 2011, 71(2), 393-403. doi: 10.1158/0008-5472.CAN-10-2012 PMID: 21224359
- Penzo, C.; Arnoldo, L.; Pegoraro, S.; Petrosino, S.; Ros, G.; Zanin, R.; Wiśniewski, J.R.; Manfioletti, G.; Sgarra, R. HMGA1 modulates gene transcription sustaining a tumor signalling pathway acting on the epigenetic status of triple-negative breast cancer cells. Cancers (Basel), 2019, 11(8), 1105. doi: 10.3390/cancers11081105 PMID: 31382504
- Liu, K.; Cho, Y.Y.; Yao, K.; Nadas, J.; Kim, D.J.; Cho, E.J.; Lee, M.H.; Pugliese, A.; Zhang, J.; Bode, A.M.; Dong, Z.; Dong, Z. Eriodictyol inhibits RSK2-ATF1 signaling and suppresses EGF-induced neoplastic cell transformation. J. Biol. Chem., 2011, 286(3), 2057-2066. doi: 10.1074/jbc.M110.147306 PMID: 21098035
- Kang, J.; Chun, J.; Hwang, J.S.; Pan, C.; Li, J.; Boese, A.C.; Young, I.; Malin, C.M.; Kang, Y.; Gibbons, D.L.; Sica, G.; Fu, H.; Ramalingam, S.S.; Jin, L.; Kang, S. EGFR-phosphorylated GDH1 harmonizes with RSK2 to drive CREB activation and tumor metastasis in EGFR-activated lung cancer. Cell Rep., 2022, 41(11), 111827. doi: 10.1016/j.celrep.2022.111827 PMID: 36516759
- Vanden Berghe, W.; De Naeyer, A.; Dijsselbloem, N.; David, J.P.; De Keukeleire, D.; Haegeman, G. Attenuation of ERK/RSK2-driven NFκB gene expression and cancer cell proliferation by kurarinone, a lavandulyl flavanone isolated from Sophora flavescens ait. roots. Endocr. Metab. Immune Disord. Drug Targets, 2011, 11(3), 247-261. doi: 10.2174/187153011796429790 PMID: 21831037
- Qian, X.; Xu, Q.; Li, G.; Bu, Y.; Sun, F.; Zhang, J. Therapeutic effect of idebenone on rats with vascular dementia via the MicroRNA-216a/RSK2/NF-κB axis. Neuropsychiatr. Dis. Treat., 2021, 17, 533-543. doi: 10.2147/NDT.S293614 PMID: 33628024
- Wu, H.Z.; Li, L.Y.; Jiang, S.L.; Li, Y.Z.; Shi, X.M.; Sun, X.Y.; Li, Z.; Cheng, Y. RSK2 promotes melanoma cell proliferation and vemurafenib resistance via upregulating cyclin D1. Front. Pharmacol., 2022, 13, 950571. doi: 10.3389/fphar.2022.950571 PMID: 36210843
- Kosnopfel, C.; Sinnberg, T.; Sauer, B.; Niessner, H.; Schmitt, A.; Makino, E.; Forschner, A.; Hailfinger, S.; Garbe, C.; Schittek, B. Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase. Oncotarget, 2017, 8(22), 35761-35775. doi: 10.18632/oncotarget.16204 PMID: 28415756
- Li, Y.; Yu, P.; Long, J.; Tang, L.; Zhang, X.; Zhou, Z.; Cao, D.; Su, J.; Chen, X.; Peng, C. A novel ribosomal protein S6 kinase 2 inhibitor attenuates the malignant phenotype of cutaneous malignant melanoma cells by inducing cell cycle arrest and apoptosis. Bioengineered, 2022, 13(5), 13555-13570. doi: 10.1080/21655979.2022.2080364 PMID: 36700473
- Lommel, M.J.; Trairatphisan, P.; Gäbler, K.; Laurini, C.; Muller, A.; Kaoma, T.; Vallar, L.; Sauter, T.; Schaffner-Reckinger, E. L‐plastin Ser5 phosphorylation in breast cancer cells and in vitro is mediated by RSK downstream of the ERK/MAPK pathway. FASEB J., 2016, 30(3), 1218-1233. doi: 10.1096/fj.15-276311 PMID: 26631483
- Czaplinska, D.; Turczyk, L.; Grudowska, A.; Mieszkowska, M.; Lipinska, A.D.; Skladanowski, A.C.; Zaczek, A.J.; Romanska, H.M.; Sadej, R. Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(11), 2461-2470. doi: 10.1016/j.bbamcr.2014.06.022 PMID: 25014166
- Alesi, G.N.; Jin, L.; Li, D.; Magliocca, K.R.; Kang, Y.; Chen, Z.G.; Shin, D.M.; Khuri, F.R.; Kang, S. RSK2 signals through stathmin to promote microtubule dynamics and tumor metastasis. Oncogene, 2016, 35(41), 5412-5421. doi: 10.1038/onc.2016.79 PMID: 27041561
- Ma, Q.; Guin, S.; Padhye, S.S.; Zhou, Y.Q.; Zhang, R.W.; Wang, M.H. Ribosomal Protein S6 Kinase (RSK)-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein. Mol. Cancer, 2011, 10(1), 66. doi: 10.1186/1476-4598-10-66 PMID: 21619683
- Mao, L.; Summers, W.; Xiang, S.; Yuan, L.; Dauchy, R.T.; Reynolds, A.; Wren-Dail, M.A.; Pointer, D.; Frasch, T.; Blask, D.E.; Hill, S.M. Melatonin represses metastasis in Her2 -postive human breast cancer cells by suppressing RSK2 expression. Mol. Cancer Res., 2016, 14(11), 1159-1169. doi: 10.1158/1541-7786.MCR-16-0158 PMID: 27535706
- Pambid, M.R.; Berns, R.; Adomat, H.H.; Hu, K.; Triscott, J.; Maurer, N.; Zisman, N.; Ramaswamy, V.; Hawkins, C.E.; Taylor, M.D.; Dunham, C.; Guns, E.; Dunn, S.E. Overcoming resistance to sonic hedgehog inhibition by targeting p90 ribosomal S6 kinase in pediatric medulloblastoma. Pediatr. Blood Cancer, 2014, 61(1), 107-115. doi: 10.1002/pbc.24675 PMID: 23940083
- Stratford, A.L.; Reipas, K.; Hu, K.; Fotovati, A.; Brough, R.; Frankum, J.; Takhar, M.; Watson, P.; Ashworth, A.; Lord, C.J.; Lasham, A.; Print, C.G.; Dunn, S.E. Targeting p90 ribosomal S6 kinase eliminates tumor-initiating cells by inactivating Y-box binding protein-1 in triple-negative breast cancers. Stem Cells, 2012, 30(7), 1338-1348. doi: 10.1002/stem.1128 PMID: 22674792
- Mrozowski, R.M.; Vemula, R.; Wu, B.; Zhang, Q.; Schroeder, B.R.; Hilinski, M.K.; Clark, D.E.; Hecht, S.M.; O’Doherty, G.A.; Lannigan, D.A. Improving the affinity of SL0101 for RSK using structure-based design. ACS Med. Chem. Lett., 2013, 4(2), 175-179. doi: 10.1021/ml300298v PMID: 23519677
- Wright, E.B.; Fukuda, S.; Li, M.; Li, Y.; O’Doherty, G.A.; Lannigan, D.A. Identifying requirements for RSK2 specific inhibitors. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1798-1809. doi: 10.1080/14756366.2021.1957862 PMID: 34348556
- Casalvieri, K.A.; Matheson, C.J.; Backos, D.S.; Reigan, P. Substituted pteridinones as p90 ribosomal S6 protein kinase (RSK) inhibitors: A structure-activity study. Bioorg. Med. Chem., 2020, 28(5), 115303. doi: 10.1016/j.bmc.2019.115303 PMID: 31982240
- Vicier, C.; Sfumato, P.; Isambert, N.; Dalenc, F.; Robert, M.; Levy, C.; Rezai, K.; Provansal, M. TAKTIC: A prospective, multicentre, uncontrolled, phase IB/II study of LY2780301, a p70S6K/AKT inhibitor, in combination with weekly paclitaxel in HER2-negative advanced breast cancer patients. Euro. J. Cancer, 2021, 159, 205-214.
- Ushijima, M.; Shiota, M.; Matsumoto, T.; Kashiwagi, E.; Inokuchi, J.; Eto, M. An oral first‐in‐class small molecule RSK inhibitor suppresses AR variants and tumor growth in prostate cancer. Cancer Sci., 2022, 113(5), 1731-1738. doi: 10.1111/cas.15280 PMID: 35118769
- Kosnopfel, C.; Wendlinger, S.; Niessner, H.; Siewert, J.; Sinnberg, T.; Hofmann, A.; Wohlfarth, J.; Schrama, D.; Berthold, M.; Siedel, C.; Sauer, B.; Jayanthan, A.; Lenz, G.; Dunn, S.E.; Schilling, B.; Schittek, B. Inhibition of p90 ribosomal S6 kinases disrupts melanoma cell growth and immune evasion. J. Exp. Clin. Cancer Res., 2023, 42(1), 175. doi: 10.1186/s13046-023-02755-5 PMID: 37464364
- Cohen, M.S.; Hadjivassiliou, H.; Taunton, J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat. Chem. Biol., 2007, 3(3), 156-160. doi: 10.1038/nchembio859 PMID: 17259979
- Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(S2), 41-59. doi: 10.1159/000443404
- Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural products as reservoirs of novel therapeutic agents. EXCLI J., 2018, 17, 420-451. PMID: 29805348
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336. doi: 10.3390/metabo2020303 PMID: 24957513
- Song, B.; Shen, X.; Tong, C.; Zhang, S.; Chen, Q.; Li, Y.; Li, S. Gossypin: A flavonoid with diverse pharmacological effects. Chem. Biol. Drug Des., 2023, 101(1), 131-137. doi: 10.1111/cbdd.14152 PMID: 36198093
- Wang, L.; Wang, X.; Chen, H.; Zu, X.; Ma, F.; Liu, K.; Bode, A.M.; Dong, Z.; Kim, D.J. Gossypin inhibits gastric cancer growth by direct targeting of AURKA and RSK2. Phytother. Res., 2019, 33(3), 640-650. doi: 10.1002/ptr.6253 PMID: 30536456
- Cinar, I. Apoptosis-inducing activity and antiproliferative effect of gossypin on PC-3 prostate cancer cells. Anticancer. Agents Med. Chem., 2021, 21(4), 445-450. doi: 10.2174/1871520620666200721103422 PMID: 32698736
- Shi, L.; Chen, J.; Wang, Y.; Sun, G.; Liu, J.; Zhang, J.; Yan, W.; Qian, C.; Liu, N.; Fu, Z.; You, Y.; Zeng, Y. Gossypin induces G2/M arrest in human malignant glioma U251 cells by the activation of Chk1/Cdc25C pathway. Cell. Mol. Neurobiol., 2012, 32(2), 289-296. doi: 10.1007/s10571-011-9760-8 PMID: 21984341
- Feng, J.; Chen, X.; Wang, Y.; Du, Y.; Sun, Q.; Zang, W.; Zhao, G. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Mol. Cell. Biochem., 2015, 408(1-2), 163-170. doi: 10.1007/s11010-015-2492-1 PMID: 26112905
- Reipas, K.M.; Law, J.H.; Couto, N.; Islam, S.; Li, Y.; Li, H.; Cherkasov, A.; Jung, K.; Cheema, A.S.; Jones, S.J.M.; Hassell, J.A.; Dunn, S.E. Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1). Oncotarget, 2013, 4(2), 329-345. doi: 10.18632/oncotarget.834 PMID: 23593654
- Ramasamy, K.; Dwyer-Nield, L.D.; Serkova, N.J.; Hasebroock, K.M.; Tyagi, A.; Raina, K.; Singh, R.P.; Malkinson, A.M.; Agarwal, R. Silibinin prevents lung tumorigenesis in wild-type but not in iNOS-/- mice: potential of real-time micro-CT in lung cancer chemoprevention studies. Clin. Cancer Res., 2011, 17(4), 753-761. doi: 10.1158/1078-0432.CCR-10-2290 PMID: 21148748
- Zeng, J.; Sun, Y.; Wu, K.; Li, L.; Zhang, G.; Yang, Z.; Wang, Z.; Zhang, D.; Xue, Y.; Chen, Y.; Zhu, G.; Wang, X.; He, D. Chemopreventive and chemotherapeutic effects of intravesical silibinin against bladder cancer by acting on mitochondria. Mol. Cancer Ther., 2011, 10(1), 104-116. doi: 10.1158/1535-7163.MCT-10-0577 PMID: 21220495
- Lee, M.H.; Huang, Z.; Kim, D.J.; Kim, S.H.; Kim, M.O.; Lee, S.Y.; Xie, H.; Park, S.J.; Kim, J.Y.; Kundu, J.K.; Bode, A.M.; Surh, Y.J.; Dong, Z. Direct targeting of MEK1/2 and RSK2 by silybin induces cell-cycle arrest and inhibits melanoma cell growth. Cancer Prev. Res., 2013, 6(5), 455-465. doi: 10.1158/1940-6207.CAPR-12-0425 PMID: 23447564
- Kim, J.E.; Heo, Y.S.; Lee, K.W. Osajin inhibits solar UV‐induced cyclooxygenase‐2 expression through direct inhibition of RSK2. J. Cell. Biochem., 2017, 118(11), 4080-4087. doi: 10.1002/jcb.26063 PMID: 28409880
- Yao, K.; Chen, H.; Liu, K.; Langfald, A.; Yang, G.; Zhang, Y.; Yu, D.H.; Kim, M.O.; Lee, M.H.; Li, H.; Bae, K.B.; Kim, H.G.; Ma, W.Y.; Bode, A.M.; Dong, Z.; Dong, Z. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer. Cancer Prev. Res. (Phila.), 2014, 7(9), 958-967. doi: 10.1158/1940-6207.CAPR-14-0126 PMID: 24994661
- Wang, L.; Zhang, Y.; Liu, K.; Chen, H.; Yang, R.; Ma, X.; Kim, H.G.; Bode, A.M.; Kim, D.J.; Dong, Z. Carnosol suppresses patient-derived gastric tumor growth by targeting RSK2. Oncotarget, 2018, 9(76), 34200-34212. doi: 10.18632/oncotarget.24409 PMID: 30344937
- Chen, H.; Yao, K.; Chang, X.; Shim, J.H.; Kim, H.G.; Malakhova, M.; Kim, D.J.; Bode, A.M.; Dong, Z. Computational and biochemical discovery of rsk2 as a novel target for epigallocatechin gallate (EGCG). PLoS One, 2015, 10(6), e0130049. doi: 10.1371/journal.pone.0130049 PMID: 26083344
Supplementary files
