Cyclic Lipopeptides as Selective Anticancer Agents: In vitro Efficacy on B16F10 Mouse Melanoma Cells
- Authors: Hmedat A.1, Morejon M.2, Rivera D.2, Pantelic N.3, Wessjohann L.2, Kaluderovic G.2
-
Affiliations:
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg
- Issue: Vol 25, No 12 (2025)
- Pages: 873-882
- Section: Chemistry
- URL: https://genescells.com/1871-5206/article/view/694429
- DOI: https://doi.org/10.2174/0118715206351208250102114944
- ID: 694429
Cite item
Full Text
Abstract
Objective:In this study, 25 synthetic cyclic lipopeptides (CLPs) were investigated for their anticancer potential against mouse melanoma (B16F10) cells, human prostate cancer (PC-3), human colorectal adenocarcinoma (HT-29) and mouse embryonic fibroblast (NIH3T3) cells.
Methods:The cytotoxic activity of investigated compounds was evaluated using MTT and CV assays. In order to examine the mechanism of action of the most potent compound cell cycle analysis, apoptosis assay, caspase activity, CFSE and DHR staining, DAF-FM, autophagy and immunocytochemistry caspase-3 assays were performed.
Results:During the fast screening, compound 9, was identified as prospective active CLP against B16F10 cell line at 10 μM concentration. MTT and CV assays exhibited at least four times higher cytotoxic potential of 9 (IC50 = 8.4±1.3 μM, MTT; 10.6±1.1 μM, CV) in comparison to control drug natural occurring CLP surfactin (IC50 = 50.3±0.6 μM, MTT; 40.4±0.3 μM, CV). The use of flow cytometry analysis confirmed that apoptosis was involved in the death of B16F10 cells after treatment with 9, as demonstrated also by DAPI staining. Caspase activity could be detected during cell death (ApoStat assay, immunocytochemistry caspase-3 assay). Compound 9 provokes enhancement of nitric oxide (NO) production in B16F10 cells but does not trigger ROS/RNS generation or autophagy.
Conclusion:The study highlights that synthetic macrocycle 9 has superior tumor-specificity and potential as an anticancer agent compared to surfactin and cisplatin. These findings could guide the development of more selective and less harmful macrocyclic lipopeptides for cancer therapy.
About the authors
Ali Hmedat
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University
Email: info@benthamscience.net
Micjel Morejon
Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry
Email: info@benthamscience.net
Daniel Rivera
Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry
Email: info@benthamscience.net
Nebojsa Pantelic
Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg
Email: info@benthamscience.net
Ludger Wessjohann
Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry
Email: info@benthamscience.net
Goran Kaluderovic
Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry
Author for correspondence.
Email: info@benthamscience.net
References
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin., 2022, 72(5), 409-436. doi: 10.3322/caac.21731 PMID: 35736631
- Kim, T.; Park, S.Y.; Oh, I.H. Exploring the relationship between physical activities and health-related factors in the health-related quality of life among people with disability in Korea. Int. J. Environ. Res. Public Health, 2022, 19(13), 7839. doi: 10.3390/ijerph19137839 PMID: 35805497
- Hermans, K.E.P.E.; Kazemzadeh, F.; Loef, C.; Jansen, R.L.H.; Nagtegaal, I.D.; van den Brandt, P.A.; Schouten, L.J. Risk factors for cancer of unknown primary: A literature review. BMC Cancer, 2023, 23(1), 314. doi: 10.1186/s12885-023-10794-6 PMID: 37020279
- Salas, S.; Cottet, V.; Dossus, L.; Fassier, P.; Ginhac, J.; Latino-Martel, P.; Romieu, I.; Schneider, S.; Srour, B.; Touillaud, M.; Touvier, M.; Ancellin, R. Nutritional factors during and after cancer: Impacts on survival and quality of life. Nutrients, 2022, 14(14), 2958. doi: 10.3390/nu14142958 PMID: 35889914
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263. doi: 10.3322/caac.21834 PMID: 38572751
- Gupta, S.L.; Basu, S.; Soni, V.; Jaiswal, R.K. Immunotherapy: An alternative promising therapeutic approach against cancers. Mol. Biol. Rep., 2022, 49(10), 9903-9913. doi: 10.1007/s11033-022-07525-8 PMID: 35759082
- Stefanska, B.; Tucker, S.J.; MacEwan, D.J. Themed issue: ‘New avenues in cancer prevention and treatment’. Br. J. Pharmacol., 2022, 179(12), 2789-2794. doi: 10.1111/bph.15715 PMID: 35146753
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216. doi: 10.1038/s41573-020-00114-z PMID: 33510482
- Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res., 2021, 35(9), 4660-4702. doi: 10.1002/ptr.7099 PMID: 33847440
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335. doi: 10.1021/np200906s PMID: 22316239
- Lai, S.; Zhang, Q.; Jin, L. Natural and man-made cyclic peptide-based antibiotics. Antibiotics, 2022, 12(1), 42. doi: 10.3390/antibiotics12010042 PMID: 36671244
- Morejón, M.C.; Laub, A.; Kaluđerović, G.N.; Puentes, A.R.; Hmedat, A.N.; Otero-González, A.J.; Rivera, D.G.; Wessjohann, L.A. A multicomponent macrocyclization strategy to natural product-like cyclic lipopeptides: Synthesis and anticancer evaluation of surfactin and mycosubtilin analogues. Org. Biomol. Chem., 2017, 15(17), 3628-3637. doi: 10.1039/C7OB00459A PMID: 28406518
- Jensen, S.K.; Thomsen, T.T.; Oddo, A.; Franzyk, H.; Løbner-Olesen, A.; Hansen, P.R. Novel cyclic lipopeptide antibiotics: Effects of acyl chain length and position. Int. J. Mol. Sci., 2020, 21(16), 5829. doi: 10.3390/ijms21165829 PMID: 32823798
- Singh, S.; Sequeira, R.A.; Kumar, P.; Ghadge, V.A.; Vaghela, P.; Mohanty, A.K.; Ghosh, A.; Prasad, K.; Shinde, P.B. Selective partition of lipopeptides from fermentation broth: A green and sustainable approach. ACS Omega, 2022, 7(50), 46646-46652. doi: 10.1021/acsomega.2c05587 PMID: 36570225
- Fewer, D.P.; Jokela, J.; Heinilä, L.; Aesoy, R.; Sivonen, K.; Galica, T.; Hrouzek, P.; Herfindal, L. Chemical diversity and cellular effects of antifungal cyclic lipopeptides from Cyanobacteria. Physiol. Plant., 2021, 173(2), 639-650. doi: 10.1111/ppl.13484 PMID: 34145585
- Geudens, N.; Martins, J.C. Cyclic lipodepsipeptides from Pseudomonas spp.–biological swiss-army knives. Front. Microbiol., 2018, 9, 1867. doi: 10.3389/fmicb.2018.01867 PMID: 30158910
- Mazzola, M.; de Bruijn, I.; Cohen, M.F.; Raaijmakers, J.M. Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl. Environ. Microbiol., 2009, 75(21), 6804-6811. doi: 10.1128/AEM.01272-09 PMID: 19717630
- Wójtowicz, K.; Czogalla, A.; Trombik, T.; Łukaszewicz, M. Surfactin cyclic lipopeptides change the plasma membrane composition and lateral organization in mammalian cells. Biochim. Biophys. Acta Biomembr., 2021, 1863(12), 183730. doi: 10.1016/j.bbamem.2021.183730 PMID: 34419486
- Dey, H.; Simonovic, D.; Norberg-Schulz Hagen, I.; Vasskog, T.; Fredheim, E.G.A.; Blencke, H.M.; Anderssen, T.; Strøm, M.B.; Haug, T. Synthesis and antimicrobial activity of short analogues of the marine antimicrobial peptide turgencin A: Effects of SAR optimizations, Cys-Cys cyclization and lipopeptide modifications. Int. J. Mol. Sci., 2022, 23(22), 13844. doi: 10.3390/ijms232213844 PMID: 36430320
- Ren, L.; Yuan, Z.; Xie, T.; Wu, D.; Kang, Q.; Li, J.; Li, J. Extraction and characterization of cyclic lipopeptides with antifungal and antioxidant activities from Bacillus amyloliquefaciens. J. Appl. Microbiol., 2022, 133(6), 3573-3584. doi: 10.1111/jam.15791 PMID: 36000263
- Ramadhani, D.; Maharani, R.; Gazzali, A.M.; Muchtaridi, M. Cyclic peptides for the treatment of cancers: A review. Molecules, 2022, 27(14), 4428. doi: 10.3390/molecules27144428 PMID: 35889301
- Falanga, A.; Nigro, E.; De Biasi, M.; Daniele, A.; Morelli, G.; Galdiero, S.; Scudiero, O. Cyclic peptides as novel therapeutic microbicides: Engineering of human defensin mimetics. Molecules, 2017, 22(7), 1217. doi: 10.3390/molecules22071217 PMID: 28726740
- Vo, T.T.T.; Wee, Y.; Cheng, H.C.; Wu, C.Z.; Chen, Y.L.; Tuan, V.P.; Liu, J.F.; Lin, W.N.; Lee, I.T. Surfactin induces autophagy, apoptosis, and cell cycle arrest in human oral squamous cell carcinoma. Oral Dis., 2023, 29(2), 528-541. doi: 10.1111/odi.13950 PMID: 34181793
- Sar, P.; Ghosh, A.; Scarso, A.; Saha, B. Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry. Res. Chem. Intermed., 2019, 45(12), 6021-6041. doi: 10.1007/s11164-019-04017-6
- Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules, 2020, 25(3), 505. doi: 10.3390/molecules25030505 PMID: 31991635
- Farhid, H.; Khodkari, V.; Nazeri, M.T.; Javanbakht, S.; Shaabani, A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Org. Biomol. Chem., 2021, 19(15), 3318-3358. doi: 10.1039/D0OB02600J PMID: 33899847
- Reguera, L.; Rivera, D.G. Multicomponent reaction toolbox for peptide macrocyclization and stapling. Chem. Rev., 2019, 119(17), 9836-9860. doi: 10.1021/acs.chemrev.8b00744 PMID: 30990310
- Roberts, K.D.; Zhu, Y.; Azad, M.A.K.; Han, M.L.; Wang, J.; Wang, L.; Yu, H.H.; Horne, A.S.; Pinson, J.A.; Rudd, D.; Voelcker, N.H.; Patil, N.A.; Zhao, J.; Jiang, X.; Lu, J.; Chen, K.; Lomovskaya, O.; Hecker, S.J.; Thompson, P.E.; Nation, R.L.; Dudley, M.N.; Griffith, D.C.; Velkov, T.; Li, J. A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens. Nat. Commun., 2022, 13(1), 1625. doi: 10.1038/s41467-022-29234-3 PMID: 35338128
- Morejón, M.C. New Multicomponent strategies to cyclic lipopeptides; PhD thesis (editor: L. A. Wessjohann). Universitäts-und Landesbibliothek Sachsen-Anhalt, 2018.
- Morejón, M. C.; Laub, A.; Westermann, B.; Rivera, D. G.; Wessjohann, L. A. Solution and solid-phase macrocyclization of peptides by the ugi-smiles multicomponent reaction: Synthesis of N-arylbridged cyclic lipopeptides. Org. Lett., 2016, 18(16), 4096-4099. doi: 10.1021/acs.orglett.6b02001
- Krajnović, T.; Kaluđerović, G.N.; Wessjohann, L.A.; Mijatović, S.; Maksimović-Ivanić, D. Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo. Pharmacol. Res., 2016, 105, 62-73. doi: 10.1016/j.phrs.2016.01.011 PMID: 26784390
- Hmedat, A. N.; Morejón, M. C.; Rivera, D. G.; Pantelić, N. Đ.; Wessjohann, L. A.; Kaluđerović, G. N. J. J. o. t. S. C. S., In vitro anticancer studies of a small library of cyclic lipopeptides against the human cervix adenocarcinoma HeLa cells. J. Serb. Chem. Soc., 2024, 89(4), 471-484. doi: 10.2298/jsc240109018h
- Bačenková, D.; Trebuňová, M.; Zachar, L.; Hudák, R.; Ižaríková, G.; Šurínová, K.; Živčák, J. Analysis of same selected immunomodulatory properties of chorionic mesenchymal stem cells. Appl. Sci. , 2020, 10(24), 9040. doi: 10.3390/app10249040
- Pioch, J.; Blomgran, R. Optimized flow cytometry protocol for dihydrorhodamine 123-based detection of reactive oxygen species in leukocyte subpopulations in whole blood. J. Immunol. Methods, 2022, 507, 113308. doi: 10.1016/j.jim.2022.113308 PMID: 35760097
- Almutary, A.; Sanderson, B.J.S. The MTT and crystal violet assays: potential confounders in nanoparticle toxicity testing. Int. J. Toxicol., 2016, 35(4), 454-462. doi: 10.1177/1091581816648906 PMID: 27207930
- Canga, I.; Vita, P.; Oliveira, A.I.; Castro, M.Á.; Pinho, C. In vitro cytotoxic activity of African plants: A review. Molecules, 2022, 27(15), 4989. doi: 10.3390/molecules27154989 PMID: 35956938
- Gómez-Bombarelli, R.; Calle, E.; Casado, J. Mechanisms of lactone hydrolysis in neutral and alkaline conditions. J. Org. Chem., 2013, 78(14), 6868-6879. doi: 10.1021/jo400258w PMID: 23758295
- Morikawa, M.; Hirata, Y.; Imanaka, T. A study on the structure–function relationship of lipopeptide biosurfactants. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2000, 1488(3), 211-218. doi: 10.1016/S1388-1981(00)00124-4 PMID: 11082531
- Morel, A.F.; Machado, E.C.S.; Moreira, J.J.; Menezes, A.S.; Mostardeiro, M.A.; Zanatta, N.; Wessjohann, L.A. Cyclopeptide alkaloids of Scutia buxifolia. Phytochemistry, 1998, 47(1), 125-129. doi: 10.1016/S0031-9422(97)00491-3 PMID: 9621457
- Morel, A.; Machado, E.C.; Wessjohann, L.A. Cyclopeptide alkaloids of Discaria febrifuga (Rhamnaceae). Phytochemistry, 1995, 39(2), 431-434. doi: 10.1016/0031-9422(94)00924-I
- Edeler, D.; Kaluđerović, M.R.; Dojčinović, B.; Schmidt, H.; Kaluđerović, G.N. SBA-15 mesoporous silica particles loaded with cisplatin induce senescence in B16F10 cells. RSC Advances, 2016, 6(112), 111031-111040. doi: 10.1039/C6RA22596A
- Nascimento, F.R.; Moura, T.A.; Baeta, J.V.P.B.; Publio, B.C.; Ferreira, P.M.F.; Santos, A.A.; França, A.A.P.; Rocha, M.S.; Diaz-Muñoz, G.; Diaz, M.A.N. New antineoplastic agent based on a dibenzoylmethane derivative: Cytotoxic effect and direct interaction with DNA. Biophys. Chem., 2018, 239, 1-6. doi: 10.1016/j.bpc.2018.04.009 PMID: 29753256
- Esmailzadeh, A.; Shanei, A.; Attaran, N.; Hejazi, S.H.; Hemati, S. Biology, Sonodynamic therapy using dacarbazine-loaded AuSiO2 nanoparticles for melanoma treatment: An in-vitro study on the B16F10 murine melanoma cell line. Ultrasound Med. Biol., 2022, 48(6), 1131-1142. doi: 10.1016/j.ultrasmedbio.2022.02.015 PMID: 35307236
- Wang, L.; Zhao, X.; Fu, J.; Xu, W.; Yuan, J. The role of tumour metabolism in cisplatin resistance. Front. Mol. Biosci., 2021, 8, 691795. doi: 10.3389/fmolb.2021.691795 PMID: 34250022
- Yerlikaya, A.; Erin, N. Differential sensitivity of breast cancer and melanoma cells to proteasome inhibitor Velcade. Int. J. Mol. Med., 1998, 22(6), 817-823. doi: 10.3892/ijmm_00000090 PMID: 19020781
- Velatooru, L.R.; Baggu, C.B.; Janapala, V.R. Spatane diterpinoid from the brown algae, Stoechospermum marginatum induces apoptosis via ROS induced mitochondrial mediated caspase dependent pathway in murine B16F10 melanoma cells. Mol. Carcinog., 2016, 55(12), 2222-2235. doi: 10.1002/mc.22463 PMID: 26785383
- Chen, Z.; Li, W.; Hu, X.; Liu, M. Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. Biomed. Opt. Express, 2020, 11(1), 27-39. doi: 10.1364/BOE.11.000027 PMID: 32010497
- Csuk, R.; Heller, L.; Siewert, B.; Gutnov, A.; Seidelmann, O.; Wendisch, V. β-Nitro substituted carboxylic acids and their cytotoxicity. Bioorg. Med. Chem. Lett., 2014, 24(16), 4011-4013. doi: 10.1016/j.bmcl.2014.06.021 PMID: 25001484
- Lin, S.; Ke, Z.; Liu, K.; Zhu, S.; Li, Z.; Yin, H.; Chen, Z. Identification of DAPI-stained normal, inflammatory, and carcinoma hepatic cells based on hyperspectral microscopy. Biomed. Opt. Express, 2022, 13(4), 2082-2090. doi: 10.1364/BOE.451006 PMID: 35519237
- Hung, S.Y.; Lin, S.C.; Wang, S.; Chang, T.J.; Tung, Y.T.; Lin, C.C.; Ho, C.T.; Li, S. Bavachinin induces G2/M cell cycle arrest and apoptosis via the ATM/ATR signaling pathway in human small cell lung cancer and shows an antitumor effect in the xenograft model. J. Agric. Food Chem., 2021, 69(22), 6260-6270. doi: 10.1021/acs.jafc.1c01657 PMID: 34043345
- Alkahtani, S.A.; Alshabi, A.M.; Shaikh, I.A.; Orabi, M.A.A.; Abdel-Wahab, B.A.; Walbi, I.A.; Habeeb, M.S.; Khateeb, M.M.; Shettar, A.K.; Hoskeri, J.H. In vitro cytotoxicity and spectral analysis-based phytochemical profiling of methanol extract of barleria hochstetteri, and molecular mechanisms underlying its apoptosis-inducing effect on breast and lung cancer cell lines. Separations, 2022, 9(10), 298. doi: 10.3390/separations9100298
- Maruoka, M.; Zhang, P.; Mori, H.; Imanishi, E.; Packwood, D. M.; Harada, H.; Kosako, H.; Suzuki, J. Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane. Mol. Cell, 2021, 81(7), 1397-1410. doi: 10.1016/j.molcel.2021.02.025
- Kıran, T.R.; Otlu, O.; Karabulut, A.B. Oxidative stress and antioxidants in health and disease. J. Lab. Med., 2023, 47(1), 1-11. doi: 10.1515/labmed-2022-0108
- Mintz, J.; Vedenko, A.; Rosete, O.; Shah, K.; Goldstein, G.; Hare, J.M.; Ramasamy, R.; Arora, H. Current advances of nitric oxide in cancer and anticancer therapeutics. Vaccines , 2021, 9(2), 94. doi: 10.3390/vaccines9020094 PMID: 33513777
- Gómez-Virgilio, L.; Silva-Lucero, M.C.; Flores-Morelos, D.S.; Gallardo-Nieto, J.; Lopez-Toledo, G.; Abarca-Fernandez, A.M.; Zacapala-Gómez, A.E.; Luna-Muñoz, J.; Montiel-Sosa, F.; Soto-Rojas, L.O.; Pacheco-Herrero, M.; Cardenas-Aguayo, M.C. Autophagy: A key regulator of homeostasis and disease: An overview of molecular mechanisms and modulators. Cells, 2022, 11(15), 2262. doi: 10.3390/cells11152262 PMID: 35892559
- Wessjohann, L. A.; Bartelt, R.; Brandt, W. Natural and nature‐inspired macrocycles: A chemoinformatic overview and relevant examples. In: Practical Medicinal Chemistry with Macrocycles: Design, Synthesis, and Case Studies; Wiley, 2017; pp. 77-100. doi: 10.1002/9781119092599.ch4
- Wessjohann, L.A.; Ruijter, E.; Garcia-Rivera, D.; Brandt, W. What can a chemist learn from nature's macrocycles? -- A brief, conceptual view. Mol. Divers., 2005, 9(1-3), 171-186. doi: 10.1007/s11030-005-1314-x PMID: 15789564
Supplementary files
