Anticancer Properties of Phenylboronic Acid in Androgen-Dependent (LNCaP) and Androgen-Independent (PC3) Prostate Cancer Cells via MAP Kinases by 2D and 3D Culture Methods


Cite item

Full Text

Abstract

Objective:This study utilized three cell lines: normal prostate epithelial RWPE-1, androgen-dependent LNCaP, and androgen-independent PC3. We investigated the inhibitory effects of phenylboronic acid (PBA)’s inhibitory effect on cellular proliferation due to its ability to disrupt microtubule formation in prostate cancer cell lines. Additionally, this study aimed to assess the cytotoxic effects of PBA on prostate cancer cells using twodimensional (2D) and three-dimensional (3D) cell culture models.

Methods:The IC50 values of PBA and colchicine were determined through viability assays in 2D and 3D models. Colony formation, proliferation, and migration assays were conducted. Immunofluorescence intensity analysis of MAPKKK proteins (ERK, JNK, p38) was performed to explore the mechanism of cellular response to PBA.

Results:The IC50 values were determined for each treatment group. After 48-hour of PBA treatment, migration was inhibited more effectively than with colchicine in both cancer cell lines. After 24-hour, PBA reduced colony formation and proliferation. PBA treatment for 24-hour decreased JNK expression in PC3 and LNCaP cells in 2D models. Both PBA and colchicine increased p38 expression in PC3 spheroids. PBA’s effects on cell deformation were visualized in semi-thin sections, marking the first ultrastructural observation of PBA-induced morphological defects in cancer cells.

Conclusion:PBA exerts antimitotic effects by inhibiting proliferation and migration and triggers diverse metabolic responses across different cell lines. Furthermore the low toxicity of PBA’s low toxicity on RWPE-1 cells suggests its potential as a promising chemotherapeutic agent for future studies.

About the authors

Duygu Gurgen

Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University

Email: info@benthamscience.net

Arzu Gunes

Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University

Email: info@benthamscience.net

Oguzhan Kose

Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University

Email: info@benthamscience.net

Arife Ahsen Kaplan

Department of Histology and Embryology, Faculty of Medicine,, Istanbul Medipol University, Istanbul

Email: info@benthamscience.net

Seda Karabulut

Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University

Email: info@benthamscience.net

M. Tunalı

Department of Veterinary Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University- Cerrahpaşa

Email: info@benthamscience.net

İlknur Keskin

Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin., 2024, 74(1), 12-49. doi: 10.3322/caac.21820 PMID: 38230766
  2. Harris, A.E.; Metzler, V.M.; Roy, L.J.; Varun, D.; Woodcock, C.L.; Haigh, D.B.; Endeley, C.; Haque, M.; Toss, M.S.; Alsaleem, M.; Persson, J.L.; Gudas, L.J.; Rakha, E.; Robinson, B.D.; Khani, F.; Martin, L.M.; Moyer, J.E.; Brownlie, J.; Madhusudan, S.; Allegrucci, C.; James, V.H.; Rutland, C.S.; Fray, R.G.; Ntekim, A.; Brot, d.S.; Mongan, N.P.; Jeyapalan, J.N. Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer. Front. Endocrinol., 2022, 13, 1006101. doi: 10.3389/fendo.2022.1006101 PMID: 36263323
  3. Ferraldeschi, R.; Welti, J.; Luo, J.; Attard, G.; Bono, d.J.S. Targeting the androgen receptor pathway in castration-resistant prostate cancer: Progresses and prospects. Oncogene, 2015, 34(14), 1745-1757. doi: 10.1038/onc.2014.115 PMID: 24837363
  4. Shafi, A.A.; Yen, A.E.; Weigel, N.L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol. Ther., 2013, 140(3), 223-238. doi: 10.1016/j.pharmthera.2013.07.003 PMID: 23859952
  5. Palmberg, C.; Koivisto, P.; Visakorpi, T.; Tammela, T.L.J. PSA decline is an independent prognostic marker in hormonally treated prostate cancer. Eur. Urol., 1999, 36(3), 191-196. doi: 10.1159/000067996 PMID: 10450001
  6. Saraon, P.; Drabovich, A.P.; Jarvi, K.A.; Diamandis, E.P. Mechanisms of androgen-independent prostate cancer. EJIFCC, 2014, 25(1), 42-54. PMID: 27683456
  7. Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol., 2015, 4(3), 365-380. doi: 10.3978/J.ISSN.2223-4683.2015.05.02 PMID: 26814148
  8. Türk, C.; Neisius, A.; Petrik, A. EAU guidelines on interventional treatment for urolithiasis. Europ. Urol., 2016, 69(3), 475-482.
  9. Ramjan, A; Hossain, M; Runa, JF; Md, H; Mahmodul, I. Evaluation of thrombolytic potential of three medicinal plants available in Bangladesh, as a potent source of thrombolytic compounds. Avicenna. J. Phytomed., 2014, 4(6), 430-436. PMID: 25386407
  10. George, K.; Thomas, N.S.; Malathi, R. Modulatory effect of selected dietary phytochemicals on delayed rectifier K+ current in human prostate cancer cells. J. Membr. Biol., 2019, 252(2-3), 195-206. doi: 10.1007/s00232-019-00070-9 PMID: 31165179
  11. Page, L.C.; Koumakpayi, I.H.; Fahmy, A.M.; Masson, M.A-M.; Saad, F. Expression and localisation of Akt-1, Akt-2 and Akt-3 correlate with clinical outcome of prostate cancer patients. Br. J. Cancer, 2006, 94(12), 1906-1912. doi: 10.1038/sj.bjc.6603184 PMID: 16721361
  12. Berish, R.B.; Ali, A.N.; Telmer, P.G.; Ronald, J.A.; Leong, H.S. Translational models of prostate cancer bone metastasis. Nat. Rev. Urol., 2018, 15, 403-421. doi: 10.1038/s41585-018-0020-2
  13. Wang, Y.; Xia, Y.; Lu, Z. Metabolic features of cancer cells. Cancer Commun., 2018, 38(1), 1-6. doi: 10.1186/s40880-018-0335-7 PMID: 30376896
  14. Murphy, B.T.; MacKinnon, S.L.; Yan, X.; Hammond, G.B.; Vaisberg, A.J.; Neto, C.C. Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). J. Agric. Food Chem., 2003, 51(12), 3541-3545. doi: 10.1021/jf034114g PMID: 12769521
  15. Li, X.; Wang, X.; Zhang, J.; Hanagata, N.; Wang, X.; Weng, Q.; Ito, A.; Bando, Y.; Golberg, D. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nat. Commun., 2017, 8(1), 13936. doi: 10.1038/ncomms13936 PMID: 28059072
  16. Marasovic, M.; Ivankovic, S.; Stojkovic, R.; Djermic, D.; Galic, B.; Milos, M. In vitro and in vivo antitumour effects of phenylboronic acid against mouse mammary adenocarcinoma 4T1 and squamous carcinoma SCCVII cells. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1299-1304. doi: 10.1080/14756366.2017.1384823 PMID: 29072095
  17. Williams, G.M.T.; Chapin, R.E.; King, P.E.; Moser, G.J.; Goldsworthy, T.L.; Morrison, J.P.; Maronpot, R.R. Boron supplementation inhibits the growth and local expression of IGF-1 in human prostate adenocarcinoma (LNCaP) tumors in nude mice. Toxicol. Pathol., 2004, 32(1), 73-78. doi: 10.1080/01926230490260899 PMID: 14713551
  18. Barranco, W.T.; Hudak, P.F.; Eckhert, C.D. Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States). Canc. Caus. Cont., 2007, 18(1), 71-77. doi: 10.1007/s10552-006-0077-8 PMID: 17186423
  19. McAuley, E.M.; Bradke, T.A.; Plopper, G.E. Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration. Cell Adhes. Migr., 2011, 5(5), 382-386. doi: 10.4161/cam.5.5.18162 PMID: 21975546
  20. Psurski, M.; Słowik, Ł.A.; Woźniak, A.A.; Wietrzyk, J.; Sporzyński, A. Discovering simple phenylboronic acid and benzoxaborole derivatives for experimental oncology – phase cycle-specific inducers of apoptosis in A2780 ovarian cancer cells. Invest. New Drugs, 2019, 37(1), 35-46. doi: 10.1007/s10637-018-0611-z PMID: 29779163
  21. Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124. doi: 10.1016/j.ejmech.2014.09.051 PMID: 25240869
  22. Qin, M.; Peng, S.; Liu, N.; Hu, M.; He, Y.; Li, G.; Chen, H.; He, Y.; Chen, A.; Wang, X.; Liu, M.; Chen, Y.; Yi, Z. LG308, a novel synthetic compound with antimicrotubule activity in prostate cancer cells, exerts effective antitumor activity. J. Pharmacol. Exp. Ther., 2015, 355(3), 473-483. doi: 10.1124/jpet.115.225912 PMID: 26377911
  23. Mukhtar, E.; Adhami, V.M.; Sechi, M.; Mukhtar, H. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Lett., 2015, 367(2), 173-183. doi: 10.1016/j.canlet.2015.07.030 PMID: 26235140
  24. Bates, D.; Eastman, A. Microtubule destabilising agents: Far more than just antimitotic anticancer drugs. Br. J. Clin. Pharmacol., 2017, 83(2), 255-268. doi: 10.1111/bcp.13126 PMID: 27620987
  25. Stone, A.A.; Chambers, T.C. Microtubule inhibitors elicit differential effects on MAP kinase (JNK, ERK, and p38) signaling pathways in human KB-3 carcinoma cells. Exp. Cell Res., 2000, 254(1), 110-119. doi: 10.1006/excr.1999.4731 PMID: 10623471
  26. Shtil, A.A.; Mandlekar, S.; Yu, R. Differential regulation of mitogen-activated protein kinases by microtubule-binding agents in human breast cancer cells. Oncogene, 1999, 18(2), 377-384. doi: 10.1038/sj.onc.1202305
  27. Barranco, W.T.; Eckhert, C.D. Cellular changes in boric acid-treated DU-145 prostate cancer cells. Br. J. Cancer, 2006, 94(6), 884-890. doi: 10.1038/sj.bjc.6603009 PMID: 16495920
  28. Oh, J.; An, H.J.; Yeo, H.J.; Choi, S.; Oh, J.; Kim, S.; Kim, J.M.; Choi, J.; Lee, S. Colchicine as a novel drug for the treatment of osteosarcoma through drug repositioning based on an FDA drug library. Front. Oncol., 2022, 12, 893951. doi: 10.3389/fonc.2022.893951 PMID: 36059694
  29. Kurek, J; Myszkowski, K; Kozaryn, O.I Cytotoxic, analgesic and anti-inflammatory activity of colchicine and its C-10 sulfur containing derivatives. Sci. Rep., 2021, 11(1), 1-12. doi: 10.1038/s41598-021-88260-1
  30. Bradke, T.M.; Hall, C.; Carper, S.W.; Plopper, G.E. Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability. Cell Adhes. Migr., 2008, 2(3), 153-160. doi: 10.4161/cam.2.3.6484 PMID: 19262119
  31. Rolfo, A.; Giuffrida, D.; Giuffrida, M.C.; Todros, T.; Calogero, A.E. New perspectives for prostate cancer treatment: In vitro inhibition of LNCaP and PC3 cell proliferation by amnion-derived mesenchymal stromal cells conditioned media. Aging Male, 2014, 17(2), 94-101. doi: 10.3109/13685538.2014.896894 PMID: 24597941
  32. Gannon, P.O.; Ethier, G.J.; Hassler, M.; Delvoye, N.; Aversa, M.; Poisson, A.O.; Péant, B.; Fahmy, A.M.; Saad, F.; Lapointe, R.; Masson, M.A.M. Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer. PLoS One, 2010, 5(8), e12107. doi: 10.1371/journal.pone.0012107 PMID: 20711410
  33. Shen, R.; Sumitomo, M.; Dai, J.; Harris, A.; Kaminetzky, D.; Gao, M.; Burnstein, K.L.; Nanus, D.M. Androgen-induced growth inhibition of androgen receptor expressing androgen-independent prostate cancer cells is mediated by increased levels of neutral endopeptidase. Endocrinology, 2000, 141(5), 1699-1704. doi: 10.1210/endo.141.5.7463 PMID: 10803579
  34. Laurenzana, A.; Balliu, M.; Cellai, C.; Romanelli, M.N.; Paoletti, F. Effectiveness of the histone deacetylase inhibitor (S)-2 against LNCaP and PC3 human prostate cancer cells. PLoS One, 2013, 8(3), e58267. doi: 10.1371/journal.pone.0058267 PMID: 23469273
  35. Sintich, S.M.; Steinberg, J.; Kozlowski, J.M. Cytotoxic sensitivity to tumor necrosis factor-in PC3 and LNCaP prostatic cancer cells is regulated by extracellular levels of SGP-2. Clusterin, 1999, 39(2), 87-93.
  36. Bello, D.; Webber, M.M.; Kleinman, H.K.; Wartinger, D.D.; Rhim, J.S. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis, 1997, 18(6), 1215-1223. doi: 10.1093/carcin/18.6.1215 PMID: 9214605
  37. Webber, M.; Bello, D.; Kleinman, H.K.; Hoffman, M.P. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis, 1997, 18(6), 1225-1231. doi: 10.1093/carcin/18.6.1225 PMID: 9214606
  38. Achanzar, W.E.; Achanzar, K.B.; Lewis, J.G.; Webber, M.M.; Waalkes, M.P. Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis. Toxicol. Appl. Pharmacol., 2000, 164(3), 291-300. doi: 10.1006/taap.1999.8907 PMID: 10799339
  39. Quader, S.T.A.; DeOcampo, B.D.; Williams, D.E.; Kleinman, H.K.; Webber, M.M. Evaluation of the chemopreventive potential of retinoids using a novel in vitro human prostate carcinogenesis model. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2001, 496(1-2), 153-161. doi: 10.1016/S1383-5718(01)00230-3 PMID: 11551491
  40. Bulbul, M.; Karabulut, S.; Kalender, M.; Keskin, I. Effects of gallic acid on endometrial cancer cells in two and three dimensional cell culture models. Asian Pac. J. Cancer Prev., 2021, 22(6), 1745-1751. doi: 10.31557/APJCP.2021.22.6.1745 PMID: 34181329
  41. Martinotti, S.; Ranzato, E. Scratch wound healing assay. Methods Mol. Biol., 2019, 2109, 225-229. doi: 10.1007/7651_2019_259 PMID: 31414347
  42. Banerjee, A.; Biswas, R.; Lim, R.; Pasolli, H.A.; Raghavan, S. Scanning electron microscopy of murine skin ultrathin sections and cultured keratinocytes. STAR Protoc., 2021, 2(3), 100729. doi: 10.1016/j.xpro.2021.100729 PMID: 34458866
  43. Finkelstein, Y.; Aks, S.E.; Hutson, J.R.; Juurlink, D.N.; Nguyen, P.; Raz, D.G.; Pollak, U.; Koren, G.; Bentur, Y. Colchicine poisoning: The dark side of an ancient drug. Clin. Toxicol., 2010, 48(5), 407-414. doi: 10.3109/15563650.2010.495348 PMID: 20586571
  44. Liu, L.; Chen, M.; Gao, Y.; Tian, L.; Zhang, W.; Wang, Z. Mechanism of action and side effects of colchicine based on biomechanical properties of cells. J. Microsc., 2023, 291(3), 229-236. doi: 10.1111/jmi.13212 PMID: 37358710
  45. Carr, A.A. Colchicine toxicity. Arch. Intern. Med., 1965, 115(1), 29-33. doi: 10.1001/archinte.1965.03860130031005 PMID: 14219498
  46. Eleftheriou, G.; Bacis, G.; Fiocchi, R.; Sebastiano, R. Colchicine-induced toxicity in a heart transplant patient with chronic renal failure. Clin. Toxicol., 2008, 46(9), 827-830. doi: 10.1080/15563650701779703 PMID: 18608282
  47. Fisher, M.F.; Rao, S.S. Three‐dimensional culture models to study drug resistance in breast cancer. Biotechnol. Bioeng., 2020, 117(7), 2262-2278. doi: 10.1002/bit.27356 PMID: 32297971
  48. Kaushik, V.; Yakisich, J.S.; Way, L.F.; Azad, N.; Iyer, A.K.V. Chemoresistance of cancer floating cells is independent of their ability to form 3D structures: Implications for anticancer drug screening. J. Cell. Physiol., 2019, 234(4), 4445-4453. doi: 10.1002/jcp.27239 PMID: 30191978
  49. Veine, DM; Yao, H; Stafford, DR; Fay, KS; Livant, DL A D-amino acid containing peptide as a potent, noncovalent inhibitor of α5β1 integrin in human prostate cancer invasion and lung colonization. Clin Exp Metastasis., 2014, 31(4), 379-393. doi: 10.1007/s10585-013-9634-1
  50. Abel, S.D.A.; Dadhwal, S.; Gamble, A.B.; Baird, S.K. Honey reduces the metastatic characteristics of prostate cancer cell lines by promoting a loss of adhesion. PeerJ, 2018, 6(7), e5115. doi: 10.7717/peerj.5115 PMID: 30002964
  51. Schatten, H. Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv. Exp. Med. Biol., 2018, 1095, 1-14. doi: 10.1007/978-3-319-95693-0_1 PMID: 30229546
  52. Dehghani, M; Kianpour, S; Zangeneh, A; Pour, M.Z. CXCL12 modulates prostate cancer cell adhesion by altering the levels or activities of β1-containing integrins. Int. J. Cell Biol., 2014, 2014, 981750. doi: 10.1155/2014/981750
  53. Kennedy, N.J.; Davis, R.J. Role of JNK in tumor development. Cell Cycle, 2003, 2(3), 198-200. doi: 10.4161/cc.2.3.388 PMID: 12734425
  54. Weston, C.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Genet. Dev., 2002, 12(1), 14-21. doi: 10.1016/S0959-437X(01)00258-1 PMID: 11790549
  55. Eferl, R.; Ricci, R.; Kenner, L.; Zenz, R.; David, J.P.; Rath, M.; Wagner, E.F. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell, 2003, 112(2), 181-192. doi: 10.1016/S0092-8674(03)00042-4 PMID: 12553907
  56. Xu, R.; Hu, J. The role of JNK in prostate cancer progression and therapeutic strategies. Biomed. Pharmacother., 2020, 121, 109679. doi: 10.1016/j.biopha.2019.109679 PMID: 31810118
  57. Kolomeichuk, S.N.; Terrano, D.T.; Lyle, C.S.; Sabapathy, K.; Chambers, T.C. Distinct signaling pathways of microtubule inhibitors – vinblastine and Taxol induce JNK‐dependent cell death but through AP‐1‐dependent and AP‐1‐independent mechanisms, respectively. FEBS J., 2008, 275(8), 1889-1899. doi: 10.1111/j.1742-4658.2008.06349.x PMID: 18341588
  58. Kamath, A.; Mehal, W.; Jain, D. Colchicine-associated ring mitosis in liver biopsy and their clinical implications. J. Clin. Gastroenterol., 2008, 42(9), 1060-1062. doi: 10.1097/MCG.0b013e31803815b4 PMID: 18391833
  59. Kyriakis, J.M.; Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol. Rev., 2012, 92(2), 689-737. doi: 10.1152/physrev.00028.2011 PMID: 22535895
  60. Kyriakis, J.M.; Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev., 2001, 92(2), 689-737. doi: 10.1152/physrev.2001.81.2.807
  61. Kyriakis, J.M.; Avruch, J. Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays, 1996, 18(7), 567-577. doi: 10.1002/bies.950180708 PMID: 8757935
  62. Xia, Z.; Dickens, M.; Raingeaud, J.; Davis, R.J.; Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science (1979)., 1995, 270(5240), 1326-1331. doi: 10.1126/science.270.5240.1326
  63. Sugiura, R.; Satoh, R.; Takasaki, T. ERK: A double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer. Cells, 2021, 10(10), 2509. doi: 10.3390/cells10102509 PMID: 34685488
  64. Lim, W.; Jeong, M.; Bazer, F.W.; Song, G. Coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades. J. Cell. Physiol., 2017, 232(4), 862-871. doi: 10.1002/jcp.25494 PMID: 27431052
  65. Alliana, S.A.; Menou, L.; Manié, S.; Antomarchi, S.H.; Millet, M.A.; Giuriato, S.; Ferrua, B.; Rossi, B. Microtubule integrity regulates src-like and extracellular signal-regulated kinase activities in human pro-monocytic cells. Importance for interleukin-1 production. J. Biol. Chem., 1998, 273(6), 3394-3400. doi: 10.1074/jbc.273.6.3394 PMID: 9452460
  66. Nair, R.R.; Schwarz, LA. Microtubule-disrupting agents increase transgene expression in A549 cells through the activation of the Src and ERK kinase pathway. Mol. Ther., 2003, 7, 5.
  67. Samarakoon, R.; Higgins, P.J. MEK/ERK pathway mediates cell-shape-dependent plasminogen activator inhibitor type 1 gene expression upon drug-induced disruption of the microfilament and microtubule networks. J. Cell Sci., 2002, 115(15), 3093-3103. doi: 10.1242/jcs.115.15.3093 PMID: 12118065

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers