Precision Therapy for Prostate Cancer: Advancements in Polymeric Nanocarrier Systems
- Authors: Kumar L.1, Rana R.2, Shaikh N.3, Kumar S.4, Aggarwal V.5, Komal K.6, Jyothiraditya V.7
-
Affiliations:
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University
- Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER)
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College
- Department of Pharmaceutical Chemistry, Himachal Institute of Pharmaceutical Education and Research (HIPER)
- , Senior Pharmacovigilance Specialist, Continuum India LLP
- Department of Pharmacology, Chandigarh College of Pharmacy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences
- Issue: Vol 25, No 14 (2025)
- Pages: 978-992
- Section: Chemistry
- URL: https://genescells.com/1871-5206/article/view/694438
- DOI: https://doi.org/10.2174/0118715206360906241223120425
- ID: 694438
Cite item
Full Text
Abstract
Introduction: Prostate cancer is a major worldwide health concern, and existing treatments often face challenges such as drug resistance, systemic toxicity, and insufficient targeting. Polymeric nanocarriers are currently employed as sophisticated tools in the field of oncology, offering the possibility to augment the administration and efficacy of anticancer therapies. In order to effectively eradicate prostate cancer, this review delves into the function of polymeric nanocarriers.
Methods: Databases such as PubMed, ScienceDirect, and Google Scholar were utilized to do a comprehensive literature assessment. For this search, we used terms like \"polymeric nanocarriers,\" \"prostate cancer,\" \"drug delivery,\" and \"nanotechnology.\"
Results: Studies have shown that polymeric nanocarriers greatly improve the delivery and effectiveness of treatments for prostate cancer. Nanocarriers enhance the solubility, stability, and bioavailability of drugs, resulting in improved therapeutic effects. Functionalization using targeting ligands, such as folic acid and prostate-specific membrane antigen (PSMA) antibodies, has demonstrated the ability to enhance targeted specificity, resulting in a decrease in off-target effects and systemic toxicity. Polymeric nanocarriers facilitate precise and prolonged drug delivery, leading to elevated drug levels in tumor tissues.
Conclusion: Polymeric nanocarriers are a notable breakthrough in the management of prostate cancer, providing precise medication administration, decreased toxicity, and improved therapy effectiveness. However, additional study is necessary to enhance the design of nanocarriers, evaluate their long-term safety, and enable their use in clinical applications. Continued interdisciplinary research and collaboration are essential for addressing current obstacles and maximizing the promise of polymeric nanocarriers in the treatment of prostate cancer.
About the authors
Lalit Kumar
Department of Pharmaceutics, GNA School of Pharmacy, GNA University
Author for correspondence.
Email: info@benthamscience.net
Ritesh Rana
Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER)
Email: info@benthamscience.net
Nusrat Shaikh
Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College
Email: info@benthamscience.net
Sumit Kumar
Department of Pharmaceutical Chemistry, Himachal Institute of Pharmaceutical Education and Research (HIPER)
Email: info@benthamscience.net
Vikas Aggarwal
, Senior Pharmacovigilance Specialist, Continuum India LLP
Email: info@benthamscience.net
Komal Komal
Department of Pharmacology, Chandigarh College of Pharmacy
Email: info@benthamscience.net
Vuluchala Jyothiraditya
Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences
Email: info@benthamscience.net
References
- Schatten, H. Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv. Exp. Med. Biol., 2018, 1095, 1-14. doi: 10.1007/978-3-319-95693-0_1 PMID: 30229546
- Li, J.; Zhang, Q. Polymeric nanomedicines for prostate cancer treatment: Progress and perspectives. J. Nanobiotechnology, 2023, 21, 125.
- Deshmukh, R.; Singh, V.; Harwansh, R.K.; Agrawal, R.; Garg, A.; Singh, S.; Elossaily, G.M.; Ansari, M.N.; Ali, N.; Prajapati, B.G. Emerging trends of nanomedicines in the management of prostate cancer: Perspectives and potential applications. Pharmaceutics, 2024, 16(3), 297. doi: 10.3390/pharmaceutics16030297 PMID: 38543191
- Uhr, A.; Glick, L.; Gomella, L.G. An overview of biomarkers in the diagnosis and management of prostate cancer. Can. J. Urol., 2020, 27(S3), 24-27. PMID: 32875999
- Habib, A.; Jaffar, G.; Khalid, M.S.; Hussain, Z.; Zainab, S.W.; Ashraf, Z.; Haroon, A.; Javed, R.; Khalid, B.; Habib, P. Risk factors associated with prostate cancer. J. Drug Deliv. Ther., 2021, 11(2), 188-193. doi: 10.22270/jddt.v11i2.4758
- Sayegh, N.; Swami, U.; Agarwal, N. Recent advances in the management of metastatic prostate cancer. JCO Oncol. Pract., 2022, 18(1), 45-55. doi: 10.1200/OP.21.00206 PMID: 34473525
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730. doi: 10.3390/molecules27175730 PMID: 36080493
- Gupta, S. Prostate cancer chemoprevention: Models, limitations and potential (Review). Int. J. Oncol., 2004, 25(4), 1133-1148. PMID: 15375566
- Pirtskhalaishvili, G.; Hrebinko, R.L.; Nelson, J.B. The treatment of prostate cancer: An overview of current options. Cancer Pract., 2001, 9(6), 295-306. doi: 10.1111/j.1523-5394.2001.96009.pp.x PMID: 11879332
- Litwin, M.S.; Tan, H.J. The diagnosis and treatment of prostate cancer: A review. JAMA, 2017, 317(24), 2532-2542. doi: 10.1001/jama.2017.7248 PMID: 28655021
- Hurwitz, M.D. Chemotherapy and radiation for prostate cancer. Transl. Androl. Urol., 2018, 7(3), 390-398. doi: 10.21037/tau.2018.03.07 PMID: 30050799
- Gupta, S.; Gupta, P.K.; Dharanivasan, G.; Verma, R.S. Current prospects and challenges of nanomedicine delivery in prostate cancer therapy. Nanomedicine, 2017, 12(23), 2675-2692. doi: 10.2217/nnm-2017-0236 PMID: 29098929
- Upadhyay, T.K.; Ali, M.I.; Khan, F.; Goel, H.; Mathur, M.; Goyal, K.; Moin, S.; Pandey, P.; Tanwar, P.; Sharangi, A.B.; Gautam, S.D.C.; Kapdi, J.K.; Patel, K.I.; Patel, M.V.; Parmar, A.M.; Kamal, M.A. Nanoparticles mediated target-specific drug delivery in prostate cancer: An in-depth review. Curr. Med. Chem., 2022, 29(24), 4170-4184. doi: 10.2174/0929867329666211221112312 PMID: 34939536
- Adekiya, T.A.; Owoseni, O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat. Res. Commun., 2023, 37, 100778. doi: 10.1016/j.ctarc.2023.100778 PMID: 37992539
- Cifuentes-Rius, A.; Butler, L.M.; Voelcker, N.H. Precision nanomedicines for prostate cancer. Nanomedicine , 2018, 13(8), 803-807. doi: 10.2217/nnm-2018-0034 PMID: 29485327
- Cohen, L.; Livney, Y.D.; Assaraf, Y.G. Targeted nanomedicine modalities for prostate cancer treatment. Drug Resist. Updat., 2021, 56, 100762. doi: 10.1016/j.drup.2021.100762 PMID: 33857756
- Sun, W.; Deng, Y.; Zhao, M.; Jiang, Y.; Gou, J.; Wang, Y.; Yin, T.; Zhang, Y.; He, H.; Tang, X. Targeting therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies. J. Control. Release, 2021, 333, 41-64. doi: 10.1016/j.jconrel.2021.01.010 PMID: 33450321
- Shahrukh, S.; Jain, N.; Shah, S.; Famta, P.; Srinivasarao, D.A.; Khatri, D.K.; Asthana, A.; Singh, S.B.; Raghuvanshi, R.S.; Srivastava, S. Aptamer guided nanomedicine strategies in prostate cancer: Targeting and diagnosis. J. Drug Deliv. Sci. Technol., 2023, 85, 104593. doi: 10.1016/j.jddst.2023.104593
- Choksi, A.U.; Khan, A.I.; Lokeshwar, S.D.; Segal, D.; Weiss, R.M.; Martin, D.T. Functionalized nanoparticles targeting biomarkers for prostate cancer imaging and therapy. Am. J. Clin. Exp. Urol., 2022, 10(3), 142-153. PMID: 35874285
- Sasikumar, A.; Kamalasanan, K. Nanomedicine for prostate cancer using nanoemulsion: A review. J. Control. Release, 2017, 260, 111-123. doi: 10.1016/j.jconrel.2017.06.001 PMID: 28583444
- Ashrafizadeh, M.; Aghamiri, S.; Tan, S.C.; Zarrabi, A.; Sharifi, E.; Rabiee, N.; Kadumudi, F.B.; Pirouz, A.D.; Delfi, M.; Byrappa, K.; Thakur, V.K.; Sharath K, K.S.; Girish, Y.R.; Zandsalimi, F.; Zare, E.N.; Orive, G.; Tay, F.; Hushmandi, K.; Kumar, A.P.; Karaman, C.; Karimi-Maleh, H.; Mostafavi, E.; Makvandi, P.; Wang, Y. Nanotechnological approaches in prostate cancer therapy: Integration of engineering and biology. Nano Today, 2022, 45, 101532. doi: 10.1016/j.nantod.2022.101532
- Vicente-Ruiz, S.; Serrano-Martí, A.; Armiñán, A.; Vicent, M.J. Nanomedicine for the treatment of advanced prostate cancer. Adv. Ther., 2021, 4(1), 2000136. doi: 10.1002/adtp.202000136
- Hema, S.; Thambiraj, S.; Shankaran, D.R. Nanoformulations for targeted drug delivery to prostate cancer: An overview. J. Nanosci. Nanotechnol., 2018, 18(8), 5171-5191. doi: 10.1166/jnn.2018.15420 PMID: 29458568
- Khanam, A.; Singh, G.; Narwal, S.; Chopra, B.; Dhingra, A.K. A review on novel applications of nanotechnology in the management of prostate cancer. Curr. Drug Deliv., 2024, 21(9), 1161-1179. doi: 10.2174/0115672018180695230925113521 PMID: 37888818
- Cherian, A.M.; Nair, S.V.; Lakshmanan, V.K. The role of nanotechnology in prostate cancer theranostic applications. J. Nanosci. Nanotechnol., 2014, 14(1), 841-852. doi: 10.1166/jnn.2014.9052 PMID: 24730302
- Pranav; Laskar, P.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J. Adv. Res., 2023, 51, 197-217. doi: 10.1016/j.jare.2022.11.001 PMID: 36368516
- Panda, P.K.; Saraf, S.; Tiwari, A.; Verma, A.; Raikwar, S.; Jain, A.; Jain, S.K. Novel strategies for targeting prostate cancer. Curr. Drug Deliv., 2019, 16(8), 712-727. doi: 10.2174/1567201816666190821143805 PMID: 31433757
- He, L.; Liu, J.; Li, S.; Feng, X.; Wang, C.; Zhuang, X.; Ding, J.; Chen, X. Polymer nanoplatforms at work in prostate cancer therapy. Adv. Ther. , 2019, 2(4), 1800122. doi: 10.1002/adtp.201800122
- Aaron, L.; Franco, O.E.; Hayward, S.W. Review of prostate anatomy and embryology and the etiology of benign prostatic hyperplasia. Urol. Clin. North Am., 2016, 43(3), 279-288. doi: 10.1016/j.ucl.2016.04.012 PMID: 27476121
- Cunha, G.R.; Vezina, C.M.; Isaacson, D.; Ricke, W.A.; Timms, B.G.; Cao, M.; Franco, O.; Baskin, L.S. Development of the human prostate. Differentiation, 2018, 103, 24-45. doi: 10.1016/j.diff.2018.08.005 PMID: 30224091
- Sharma, M.; Gupta, S.; Dhole, B.; Kumar, A. The prostate gland. In: Basics of Human Andrology: A Textbook; Springer, 2017; pp. 17-35. doi: 10.1007/978-981-10-3695-8_2
- Verze, P.; Cai, T.; Lorenzetti, S. The role of the prostate in male fertility, health and disease. Nat. Rev. Urol., 2016, 13(7), 379-386. doi: 10.1038/nrurol.2016.89 PMID: 27245504
- Amin, M.; Khalid, A.; Tazeen, N.; Yasoob, M. Zonal anatomy of prostate. Ann King Edward Med Univ, 2010, 16(3), 138.
- Ali, A.; Du Feu, A.; Oliveira, P.; Choudhury, A.; Bristow, R.G.; Baena, E. Prostate zones and cancer: Lost in transition? Nat. Rev. Urol., 2022, 19(2), 101-115. doi: 10.1038/s41585-021-00524-7 PMID: 34667303
- Wang, G.; Zhao, D.; Spring, D.J.; DePinho, R.A. Genetics and biology of prostate cancer. Genes Dev., 2018, 32(17-18), 1105-1140. doi: 10.1101/gad.315739.118 PMID: 30181359
- Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; Morgan, T.M.; Carlsson, S.V. 2022 update on prostate cancer epidemiology and risk factors—A systematic review. Eur. Urol., 2023, 84(2), 191-206. doi: 10.1016/j.eururo.2023.04.021 PMID: 37202314
- Zhang, Y.; Zhou, C.K.; Rencsok, E.M.; Fall, K.; Lotan, T.L.; Loda, M.; Giunchi, F.; Platz, E.A.; De Marzo, A.M.; Mucci, L.A.; Fiorentino, M.; Ebot, E.M. A prospective study of intraprostatic inflammation, focal atrophy, and progression to lethal prostate cancer. Cancer Epidemiol. Biomarkers Prev., 2019, 28(12), 2047-2054. doi: 10.1158/1055-9965.EPI-19-0713 PMID: 31533941
- Trabzonlu, L.; Kulac, I.; Zheng, Q.; Hicks, J.L.; Haffner, M.C.; Nelson, W.G.; Sfanos, K.S.; Ertunc, O.; Lotan, T.L.; Heaphy, C.M.; Meeker, A.K.; Yegnasubramanian, S.; De Marzo, A.M. Molecular pathology of high-grade prostatic intraepithelial neoplasia: Challenges and opportunities. Cold Spring Harb. Perspect. Med., 2019, 9(4), a030403. doi: 10.1101/cshperspect.a030403 PMID: 30082453
- Brandão, A.; Paulo, P.; Teixeira, M.R. Hereditary predisposition to prostate cancer: From genetics to clinical implications. Int. J. Mol. Sci., 2020, 21(14), 5036. doi: 10.3390/ijms21145036 PMID: 32708810
- Beebe-Dimmer, J.L.; Kapron, A.L.; Fraser, A.M.; Smith, K.R.; Cooney, K.A. Risk of prostate cancer associated with familial and hereditary cancer syndromes. J. Clin. Oncol., 2020, 38(16), 1807-1813. doi: 10.1200/JCO.19.02808 PMID: 32208047
- Gandhi, J.; Afridi, A.; Vatsia, S.; Joshi, G.; Joshi, G.; Kaplan, S.A.; Smith, N.L.; Khan, S.A. The molecular biology of prostate cancer: Current understanding and clinical implications. Prostate Cancer Prostatic Dis., 2018, 21(1), 22-36. doi: 10.1038/s41391-017-0023-8 PMID: 29282359
- Oczkowski, M.; Dziendzikowska, K.; Pasternak-Winiarska, A.; Włodarek, D.; Gromadzka-Ostrowska, J. Dietary factors and prostate cancer development, progression, and reduction. Nutrients, 2021, 13(2), 496. doi: 10.3390/nu13020496 PMID: 33546190
- Matsushita, M.; Fujita, K.; Nonomura, N. Influence of diet and nutrition on prostate cancer. Int. J. Mol. Sci., 2020, 21(4), 1447. doi: 10.3390/ijms21041447 PMID: 32093338
- Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci., 2020, 8(3), 28. doi: 10.3390/medsci8030028 PMID: 32698438
- Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89. doi: 10.14740/wjon1191 PMID: 31068988
- Pernar, C.H.; Ebot, E.M.; Wilson, K.M.; Mucci, L.A. The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med., 2018, 8(12), a030361. doi: 10.1101/cshperspect.a030361 PMID: 29311132
- Škara, L.; Huđek T, A.; Pezelj, I.; Vrtarić, A.; Sinčić, N.; Krušlin, B.; Ulamec, M. Prostate cancer—Focus on cholesterol. Cancers , 2021, 13(18), 4696. doi: 10.3390/cancers13184696 PMID: 34572923
- Rotshild, V.; Rabkin, N.; Matok, I. The risk for prostate cancer with calcium channel blockers: A systematic review, meta-analysis, and meta-regression. Ann. Pharmacother., 2023, 57(1), 16-28. doi: 10.1177/10600280221098121 PMID: 35645169
- Hirshburg, J.M.; Kelsey, P.A.; Therrien, C.A.; Gavino, A.C.; Reichenberg, J.S. Adverse effects and safety of 5-alpha reductase inhibitors (finasteride, dutasteride): A systematic review. J. Clin. Aesthet. Dermatol., 2016, 9(7), 56-62. PMID: 27672412
- Allott, E.H.; Masko, E.M.; Freedland, S.J. Obesity and prostate cancer: Weighing the evidence. Eur. Urol., 2013, 63(5), 800-809. doi: 10.1016/j.eururo.2012.11.013 PMID: 23219374
- Maekawa, S.; Takata, R.; Obara, W. Molecular mechanisms of prostate cancer development in the precision medicine era: A comprehensive review. Cancers , 2024, 16(3), 523. doi: 10.3390/cancers16030523 PMID: 38339274
- Porkka, K.P.; Visakorpi, T. Molecular mechanisms of prostate cancer. Eur. Urol., 2004, 45(6), 683-691. doi: 10.1016/j.eururo.2004.01.012 PMID: 15149739
- De Marzo, A.M.; DeWeese, T.L.; Platz, E.A.; Meeker, A.K.; Nakayama, M.; Epstein, J.I.; Isaacs, W.B.; Nelson, W.G. Pathological and molecular mechanisms of prostate carcinogenesis: Implications for diagnosis, detection, prevention, and treatment. J. Cell. Biochem., 2004, 91(3), 459-477. doi: 10.1002/jcb.10747 PMID: 14755677
- Packer, J.R.; Maitland, N.J. The molecular and cellular origin of human prostate cancer. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(6)(6 Pt A), 1238-1260. doi: 10.1016/j.bbamcr.2016.02.016 PMID: 26921821
- Shtivelman, E.; Beer, T.M.; Evans, C.P. Molecular pathways and targets in prostate cancer. Oncotarget, 2014, 5(17), 7217-7259. doi: 10.18632/oncotarget.2406 PMID: 25277175
- Testa, U.; Castelli, G.; Pelosi, E. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications. Medicines , 2019, 6(3), 82. doi: 10.3390/medicines6030082 PMID: 31366128
- Fay, E.K.; Graff, J.N. Immunotherapy in prostate cancer. Cancers , 2020, 12(7), 1752. doi: 10.3390/cancers12071752 PMID: 32630247
- Chen, F.; Zhao, X. Prostate cancer: Current treatment and prevention strategies. Iran. Red Crescent Med. J., 2013, 15(4), 279-284. doi: 10.5812/ircmj.6499 PMID: 24082997
- Weiner, A.B.; Kundu, S.D. Prostate cancer. Med. Clin. North Am., 2018, 102(2), 215-229. doi: 10.1016/j.mcna.2017.10.001 PMID: 29406054
- Aragon-Ching, J.B.; Nader, R.; El Amm, J. Role of chemotherapy in prostate cancer. Asian J. Androl., 2018, 20(3), 221-229. doi: 10.4103/aja.aja_40_17 PMID: 29063869
- Canil, C.M.; Tannock, I.F. Is there a role for chemotherapy in prostate cancer? Br. J. Cancer, 2004, 91(6), 1005-1011. doi: 10.1038/sj.bjc.6601850 PMID: 15150548
- Walczak, J.R.; Carducci, M.A. Pharmacological treatments for prostate cancer. Expert Opin. Investig. Drugs, 2002, 11(12), 1737-1748. doi: 10.1517/13543784.11.12.1737 PMID: 12457434
- Silvestri, I.; Cattarino, S.; Giantulli, S.; Nazzari, C.; Collalti, G.; Sciarra, A. A perspective of immunotherapy for prostate cancer. Cancers , 2016, 8(7), 64. doi: 10.3390/cancers8070064 PMID: 27399780
- Nilsson, S.; Norlén, B.J.; Widmark, A. A systematic overview of radiation therapy effects in prostate cancer. Acta Oncol., 2004, 43(4), 316-381. doi: 10.1080/02841860410030661 PMID: 15303499
- Avramović, N.; Mandić, B.; Savić-Radojević, A.; Simić, T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics, 2020, 12(4), 298. doi: 10.3390/pharmaceutics12040298 PMID: 32218326
- Yousefi R, H.A.; Shin, D.H.; Yousefi R, S. Polymeric nanoparticles in cancer chemotherapy: A narrative review. Iran. J. Public Health, 2022, 51(2), 226-239. doi: 10.18502/ijph.v51i2.8677 PMID: 35866132
- Guo, X.; Wang, L.; Wei, X.; Zhou, S. Polymer-Based drug delivery systems for cancer treatment. J. Polym. Sci. A Polym. Chem., 2016, 54(22), 3525-3550. doi: 10.1002/pola.28252
- Alsuraifi, A.; Curtis, A.; Lamprou, D.A.; Hoskins, C. Stimuli responsive polymeric systems for cancer therapy. Pharmaceutics, 2018, 10(3), 136. doi: 10.3390/pharmaceutics10030136 PMID: 30131473
- Nagavarma, B.V.; Yadav, H.K.; Ayaz, A.V.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles-A review. Asian J. Pharm. Clin. Res., 2012, 5(3), 16-23.
- Castro, K.C.; Costa, J.M.; Campos, M.G.N. Drug-loaded polymeric nanoparticles: A review. Int. J. Polym. Mater., 2022, 71(1), 1-13. doi: 10.1080/00914037.2020.1798436
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731. doi: 10.3390/molecules25163731 PMID: 32824172
- Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials , 2020, 10(10), 1970. doi: 10.3390/nano10101970 PMID: 33027891
- Tong, X.; Pan, W.; Su, T.; Zhang, M.; Dong, W.; Qi, X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym., 2020, 148, 104501. doi: 10.1016/j.reactfunctpolym.2020.104501
- Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784. doi: 10.1016/j.msec.2017.06.004 PMID: 28866227
- Barani, M.; Sabir, F.; Rahdar, A.; Arshad, R.; Kyzas, G.Z. Nanotreatment and nanodiagnosis of prostate cancer: Recent updates. Nanomaterials, 2020, 10(9), 1696. doi: 10.3390/nano10091696 PMID: 32872181
- Essa, D.; Kondiah, P.P.D.; Kumar, P.; Choonara, Y.E. Design of chitosan-coated, quercetin-loaded PLGA nanoparticles for enhanced PSMA-specific activity on LnCap prostate cancer cells. Biomedicines, 2023, 11(4), 1201. doi: 10.3390/biomedicines11041201 PMID: 37189819
- Adekiya, T.A.; Moore, M.; Thomas, M.; Lake, G.; Hudson, T.; Adesina, S.K. Preparation, optimization, and in-vitro evaluation of brusatol- and docetaxel-loaded nanoparticles for the treatment of prostate cancer. Pharmaceutics, 2024, 16(1), 114. doi: 10.3390/pharmaceutics16010114 PMID: 38258124
- Anwer, M.K.; Ali, E.A.; Iqbal, M.; Ahmed, M.M.; Aldawsari, M.F.; Saqr, A.A.; Alalaiwe, A.; Soliman, G.A. Development of chitosan-coated PLGA-based nanoparticles for improved oral olaparib delivery: In vitro characterization, and in vivo pharmacokinetic studies. Processes , 2022, 10(7), 1329. doi: 10.3390/pr10071329
- Li, Z.; Huang, J.; Du, T.; Lai, Y.; Li, K.; Luo, M.L.; Zhu, D.; Wu, J.; Huang, H. Targeting the Rac1 pathway for improved prostate cancer therapy using polymeric nanoparticles to deliver of NSC23766. Chin. Chem. Lett., 2022, 33(5), 2496-2500. doi: 10.1016/j.cclet.2021.11.078
- Goswami, A.; Patel, N.; Bhatt, V.; Raval, M.; Kundariya, M.; Sheth, N. Lycopene loaded polymeric nanoparticles for prostate cancer treatment: Formulation, optimization using Box-behnken design and cytotoxicity studies. J. Drug Deliv. Sci. Technol., 2022, 67, 102930. doi: 10.1016/j.jddst.2021.102930
- Fang, Y.; Lin, S.; Yang, F.; Situ, J.; Lin, S.; Luo, Y. Aptamer-conjugated multifunctional polymeric nanoparticles as cancer-targeted, MRI-ultrasensitive drug delivery systems for treatment of castration-resistant prostate cancer. BioMed Res. Int., 2020, 2020, 1-12. doi: 10.1155/2020/9186583 PMID: 32420382
- Raspantini, G.L.; Luiz, M.T.; Abriata, J.P.; Eloy, J.O.; Vaidergorn, M.M.; Emery, F.S.; Marchetti, J.M. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization. Colloids Surf. A Physicochem. Eng. Asp., 2021, 627, 127144. doi: 10.1016/j.colsurfa.2021.127144
- Tao, Y.; Dai, C.; Xie, Z.; You, X.; Li, K.; Wu, J.; Huang, H. Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chin. Chem. Lett., 2024, 35(8), 109170. doi: 10.1016/j.cclet.2023.109170
- Conte, R.; Valentino, A.; Di Cristo, F.; Peluso, G.; Cerruti, P.; Di Salle, A.; Calarco, A. Cationic polymer nanoparticles-mediated delivery of miR-124 impairs tumorigenicity of prostate cancer cells. Int. J. Mol. Sci., 2020, 21(3), 869. doi: 10.3390/ijms21030869 PMID: 32013257
- Ribeiro, A.F.; Santos, J.F.; Mattos, R.R.; Barros, E.G.O.; Nasciutti, L.E.; Cabral, L.M.; Sousa, V.P.D. Characterization and in vitro antitumor activity of polymeric nanoparticles loaded with Uncaria tomentosa extract. An. Acad. Bras. Cienc., 2020, 92(1), e20190336. doi: 10.1590/0001-3765202020190336 PMID: 32321026
- Murar, M.; Pujals, S.; Albertazzi, L. Multivalent effect of peptide functionalized polymeric nanoparticles towards selective prostate cancer targeting. Nanoscale Adv., 2023, 5(5), 1378-1385. doi: 10.1039/D2NA00601D PMID: 36866255
- Jin, G.W.; Rejinold, N.S.; Choy, J.H. Multifunctional polymeric micelles for cancer therapy. Polymers , 2022, 14(22), 4839. doi: 10.3390/polym14224839 PMID: 36432965
- Ghosh, B.; Biswas, S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release, 2021, 332, 127-147. doi: 10.1016/j.jconrel.2021.02.016 PMID: 33609621
- Wei, H.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci., 2009, 34(9), 893-910. doi: 10.1016/j.progpolymsci.2009.05.002
- Aliabadi, A.; Hasannia, M.; Vakili-Azghandi, M.; Araste, F.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Synthesis approaches of amphiphilic copolymers for spherical micelle preparation: Application in drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(39), 9325-9368. doi: 10.1039/D3TB01371E PMID: 37706425
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release, 2021, 332, 312-336. doi: 10.1016/j.jconrel.2021.02.031 PMID: 33652113
- Long, M.; Liu, X.; Huang, X.; Lu, M.; Wu, X.; Weng, L.; Chen, Q.; Wang, X.; Zhu, L.; Chen, Z. Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer. J. Control. Release, 2021, 334, 303-317. doi: 10.1016/j.jconrel.2021.04.035 PMID: 33933517
- Barve, A.; Jain, A.; Liu, H.; Zhao, Z.; Cheng, K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater., 2020, 113, 501-511. doi: 10.1016/j.actbio.2020.06.019 PMID: 32562805
- Alhakamy, N.A.; Ahmed, O.A.A.; Fahmy, U.A.; Md, S. Development and in vitro evaluation of 2-methoxyestradiol loaded polymeric micelles for enhancing anticancer activities in prostate cancer. Polymers , 2021, 13(6), 884. doi: 10.3390/polym13060884 PMID: 33805675
- Zhang, H.; Liu, X.; Wu, F.; Qin, F.; Feng, P.; Xu, T.; Li, X.; Yang, L. A novel prostate-specific membrane-antigen (PSMA) targeted micelle-encapsulating wogonin inhibits prostate cancer cell proliferation via inducing intrinsic apoptotic pathway. Int. J. Mol. Sci., 2016, 17(5), 676. doi: 10.3390/ijms17050676 PMID: 27196894
- Gao, Y.; Li, Y.; Li, Y.; Yuan, L.; Zhou, Y.; Li, J.; Zhao, L.; Zhang, C.; Li, X.; Liu, Y. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nanoscale, 2015, 7(2), 597-612. doi: 10.1039/C4NR05738D PMID: 25419788
- Nezir, A.E.; Bolat, Z.B.; Ozturk, N.; Kocak, P.; Zemheri, E.; Gulyuz, S.; Ozkose, U.U.; Yilmaz, O.; Vural, I.; Bozkır, A.; Sahin, F.; Telci, D. Targeting prostate cancer with docetaxel-loaded peptide 563-conjugated PEtOx-co-PEI30%-b-PCL polymeric micelle nanocarriers. Amino Acids, 2023, 55(8), 1023-1037. doi: 10.1007/s00726-023-03292-3 PMID: 37318626
- Yang, R.; Chen, H.; Guo, D.; Dong, Y.; Miller, D.D.; Li, W.; Mahato, R.I. Polymeric micellar delivery of novel microtubule destabilizer and hedgehog signaling inhibitor for treating chemoresistant prostate cancer. J. Pharmacol. Exp. Ther., 2019, 370(3), 864-875. doi: 10.1124/jpet.119.256628 PMID: 30996033
- Xu, W.; Siddiqui, I.A.; Nihal, M.; Pilla, S.; Rosenthal, K.; Mukhtar, H.; Gong, S. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials, 2013, 34(21), 5244-5253. doi: 10.1016/j.biomaterials.2013.03.006 PMID: 23582862
- Gao, Y.; Zhou, Y.; Zhao, L.; Zhang, C.; Li, Y.; Li, J.; Li, X.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater., 2015, 23, 127-135. doi: 10.1016/j.actbio.2015.05.021 PMID: 26013038
- Dias, A.P.; da Silva Santos, S.; da Silva, J.V.; Parise-Filho, R.; Igne Ferreira, E.; Seoud, O.E.; Giarolla, J. Dendrimers in the context of nanomedicine. Int. J. Pharm., 2020, 573, 118814. doi: 10.1016/j.ijpharm.2019.118814 PMID: 31759101
- Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39(2), 268-307. doi: 10.1016/j.progpolymsci.2013.07.005
- Sun, H.J.; Zhang, S.; Percec, V. From structure to function via complex supramolecular dendrimer systems. Chem. Soc. Rev., 2015, 44(12), 3900-3923. doi: 10.1039/C4CS00249K PMID: 25325787
- Aljamal, K.; Ramaswamy, C.; Florence, A. Supramolecular structures from dendrons and dendrimers. Adv. Drug Deliv. Rev., 2005, 57(15), 2238-2270. doi: 10.1016/j.addr.2005.09.015 PMID: 16310885
- Lyu, Z.; Ding, L.; Huang, A.Y.T.; Kao, C.L.; Peng, L. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem., 2019, 13, 34-48. doi: 10.1016/j.mtchem.2019.04.004
- Mandal, A.K. Dendrimers in targeted drug delivery applications: A review of diseases and cancer. Int. J. Polym. Mater., 2021, 70(4), 287-297. doi: 10.1080/00914037.2020.1713780
- Yellepeddi, V.K.; Ghandehari, H. Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opin. Drug Deliv., 2019, 16(10), 1051-1061. doi: 10.1080/17425247.2019.1656607 PMID: 31414922
- Ghaffari, M.; Dehghan, G.; Abedi-Gaballu, F.; Kashanian, S.; Baradaran, B.; Ezzati Nazhad Dolatabadi, J.; Losic, D. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur. J. Pharm. Sci., 2018, 122, 311-330. doi: 10.1016/j.ejps.2018.07.020 PMID: 30003954
- Li, X.; Naeem, A.; Xiao, S.; Hu, L.; Zhang, J.; Zheng, Q. Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics, 2022, 14(6), 1292. doi: 10.3390/pharmaceutics14061292 PMID: 35745863
- Szota, M.; Reczyńska-Kolman, K.; Pamuła, E.; Michel, O.; Kulbacka, J.; Jachimska, B. Poly (Amidoamine) dendrimers as nanocarriers for 5-fluorouracil: effectiveness of complex formation and cytotoxicity studies. Int. J. Mol. Sci., 2021, 22(20), 11167. doi: 10.3390/ijms222011167 PMID: 34681827
- Seixas, N.; Ravanello, B.B.; Morgan, I.; Kaluđerović, G.N.; Wessjohann, L.A. Chlorambucil conjugated Ugi dendrimers with PAMAM-NH2 core and evaluation of their anticancer activity. Pharmaceutics, 2019, 11(2), 59. doi: 10.3390/pharmaceutics11020059 PMID: 30717083
- Lesniak, W.; Boinapally, S.; Lofland, G.; Jiang, Z.; Foss, C.; Behman Azad, B.; Jablonska, A.; Garcia, M.; Brzezinski, M.; Pomper, M. Multimodal, PSMA-targeted, PAMAM dendrimer-drug conjugates for treatment of prostate cancer: Preclinical evaluation. Int. J. Nanomedicine, 2024, 19, 4995-5010. doi: 10.2147/IJN.S454128 PMID: 38832336
- Dong, Y.; Chen, Y.; Zhu, D.; Shi, K.; Ma, C.; Zhang, W.; Rocchi, P.; Jiang, L.; Liu, X. Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. J. Control. Release, 2020, 322, 416-425. doi: 10.1016/j.jconrel.2020.04.003 PMID: 32247806
- Dhull, A.; Wei, J.; Pulukuri, A.J.; Rani, A.; Sharma, R.; Mesbahi, N.; Yoon, H.; Savoy, E.A.; Xaivong Vi, S.; Goody, K.J.; Berkman, C.E.; Wu, B.J.; Sharma, A. PSMA-targeted dendrimer as an efficient anticancer drug delivery vehicle for prostate cancer. Nanoscale, 2024, 16(11), 5634-5652. doi: 10.1039/D3NR06520K PMID: 38440933
- Rani, A.; Pulukuri, A.J.; Wei, J.; Dhull, A.; Dar, A.I.; Sharma, R.; Mesbahi, N.; Savoy, E.A.; Yoon, H.; Wu, B.J.; Berkman, C.E.; Sharma, A. PSMA-targeted 2-deoxyglucose-based dendrimer nanomedicine for the treatment of prostate cancer. Biomacromolecules, 2024, 25(9), 6164-6180. doi: 10.1021/acs.biomac.4c00878 PMID: 39164913
- Tai, Z.; Ma, J.; Ding, J.; Pan, H.; Chai, R.; Zhu, C.; Cui, Z.; Chen, Z.; Zhu, Q. Aptamer-functionalized dendrimer delivery of plasmid-encoding lncRNA MEG3 enhances gene therapy in castration-resistant prostate cancer. Int. J. Nanomedicine, 2020, 15, 10305-10320. doi: 10.2147/IJN.S282107 PMID: 33376323
- Teyhoo, M.; Hosseini, F.; Ardestani, M.S.; Ghorbani, M. Synthesis and evaluation of a novel nanosized anionic linear globular dendrimer G2-ciprofloxacin conjugate against prostate cancer. Pak. J. Pharm. Sci., 2020, 33(6), 2589-2594. PMID: 33867334
- Almowalad, J.; Laskar, P.; Somani, S.; Meewan, J.; Tate, R.J.; Dufès, C. Lactoferrin- and dendrimer-bearing gold nanocages for stimulus-free DNA delivery to prostate cancer cells. Int. J. Nanomedicine, 2022, 17, 1409-1421. doi: 10.2147/IJN.S347574 PMID: 35369035
- Chandran, S.S.; Ray, S.; Pomper, M.G.; Denmeade, S.R.; Mease, R.C. Prostate specific membrane antigen (PSMA) targeted nanoparticles for therapy of prostate cancer. US Patent US9422234B2,, 2016.
- Radovic-Moreno, A.F.; Zhang, F.; Langer, R.S.; Farokhzad, O.C. Polymer-encapsulated reverse micelles. US Patent US8193334B2,, 2012.
- Gao, J.; Boothman, D.; Zhou, Y.; Bey, E. pH-sensitive compositions for delivery of beta lapachone and methods of use. US Patent US9631041B2,, 2017.
- Perumal, O.P.; Podaralla, S.K.; Averineni, R.K. Polymer conjugated protein micelles. US Patent US8697098B2,, 2014.
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387. doi: 10.1007/s11095-016-1958-5 PMID: 27299311
- Kaur, D.; Jain, K.; Mehra, N.K.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res., 2016, 18(6), 146. doi: 10.1007/s11051-016-3423-0
- Behl, A.; Parmar, V.S.; Malhotra, S.; Chhillar, A.K. Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents. Polymer, 2020, 207, 122901. doi: 10.1016/j.polymer.2020.122901
- Hou, A.; Du, Y.; Su, Y.; Pang, Z.; liu, S.; Xian, S.; Zhao, X.; Ma, L.; Liu, B.; Wu, H.; Zhou, Z. CuS/Co-Ferrocene-MOF nanocomposites for photothermally enhanced chemodynamic antibacterial therapy. ACS Appl. Nano Mater., 2024, 7(9), 10998-11007. doi: 10.1021/acsanm.4c02067
- Hu, T.; Xue, B.; Meng, F.; Ma, L.; Du, Y.; Yu, S.; Ye, R.; Li, H.; Zhang, Q.; Gu, L.; Zhou, Z.; Liang, R.; Tan, C. Preparation of 2D polyaniline/MoO3− x superlattice nanosheets via intercalation‐induced morphological transformation for efficient chemodynamic therapy. Adv. Healthc. Mater., 2023, 12(11), 2202911. doi: 10.1002/adhm.202202911 PMID: 36603589
- Li, M.; Zhang, Z.; Yu, Y.; Yuan, H.; Nezamzadeh-Ejhieh, A.; Liu, J.; Pan, Y.; Lan, Q. Recent advances in Zn-MOFs and their derivatives for cancer therapeutic applications. Materials Advances, 2023, 4(21), 5050-5093. doi: 10.1039/D3MA00545C
Supplementary files
