Preliminary Investigations on Acyl Hydrazones Bearing Sulfonamides as Inhibitors of the Human Carbonic Anhydrase Isoforms I, II, IX, and XII


Cite item

Full Text

Abstract

Aim:The present study aims to identify the synthesis and structural characterization of acyl hydrazone- sulfonamide-containing compounds that were tested in vitro on human carbonic anhydrase (hCA) isoforms I, II, IX, and XII.

Methods:Herein, acyl hydrazone derivatives containing the primary sulfonamide moiety were synthesized via a three-step synthetic pathway starting from the commercially available 4-sulfamoyl benzoic acid. Structural characterizations of the final compounds were assessed through IR IR, 1H-NMR, 13C-NMR, and elemental analyses. The in vitro profiling activity of the final compounds on the Carbonic Anhydrases (CAs; EC 4.2.1.1) I, II, IX, and XII were performed by means of the stopped-flow technique and revealed nanomolar inhibitory potencies on the selected targets. Molecular docking and molecular dynamic simulations afforded a detailed understanding of the binding modes of the most effective compounds.

Results:We reported the synthesis and structural characterization of 25 acyl hydrazone-sulfonamide-containing compounds that were tested in vitro on the hCAs I, II, IX, and XII isoforms for their inhibitory features. Overall, all compounds showed nanomolar inhibition potencies on the panel of hCAs considered, and their binding modes were deciphered by means of in-silico studies. Molecular docking followed by MD simulations confirmed the stability of 4l-hCA I, 4n-hCA II, 4t-hCA II, 4v-hCA XII, and 4w-hCA XII complexes.

Conclusion:This study presents a deep understanding of the structural determinants influencing the affinity and selectivity of the designed compounds towards different hCAs, thus offering valuable insights for further optimization and development in the field.

About the authors

Efe Dogukan Dincel

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University

Author for correspondence.
Email: info@benthamscience.net

Ebru Didem Kuran

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University

Email: info@benthamscience.net

Abdulilah Ece

Department of Medical Biochemistry, Faculty of Medicine, Biruni University

Author for correspondence.
Email: info@benthamscience.net

Faika Basoglu-Unal

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, European University of Lefke

Email: info@benthamscience.net

Gioele Renzi

Neurofarba Department, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences

Email: info@benthamscience.net

Gloria Badii

Neurofarba Department, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences

Email: info@benthamscience.net

Fabrizio Carta

Neurofarba Department, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences

Email: info@benthamscience.net

Cladiu T. Supuran

Neurofarba Department, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences

Email: info@benthamscience.net

Nuray Ulusoy-Guzeldemirci

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University

Email: info@benthamscience.net

References

  1. Ökten, S.; Ekiz, M.; Koçyiğit, Ü.M.; Tutar, A.; Çelik, İ.; Akkurt, M.; Gökalp, F.; Taslimi, P.; Gülçin, İ. Synthesis, characterization, crystal structures, theoretical calculations and biological evaluations of novel substituted tacrine derivatives as cholinesterase and carbonic anhydrase enzymes inhibitors. J. Mol. Struct., 2019, 1175, 906-915. doi: 10.1016/j.molstruc.2018.08.063
  2. Occhipinti, R.; Boron, W.F. Role of carbonic anhydrases and inhibitors in acid–base physiology: Insights from mathematical modeling. Int. J. Mol. Sci., 2019, 20(15), 3841. doi: 10.3390/ijms20153841 PMID: 31390837
  3. Supuran, C.; Scozzafava, A.; Mincione, F. The development of topically acting carbonic anhydrase inhibitors as antiglaucoma agents. Curr. Pharm. Des., 2008, 14(7), 649-654. doi: 10.2174/138161208783877866 PMID: 18336310
  4. Mboge, M. Y.; McKenna, R.; Frost, S. C. Advances in anti-cancer drug development targeting Carbonic anhydrase IX and XII; Bentham Science Publishers eBooks, , 2016; pp. 3-42. doi: 10.2174/9781681083339116050004
  5. Aslan, H.; Renzi, G.; Angeli, A.; D’Agostino, I.; Ronca, R.; Massardi, M.L.; Tavani, C.; Carradori, S.; Ferraroni, M.; Governa, P.; Manetti, F.; Carta, F.; Supuran, C.T. Benzenesulfonamide decorated dihydropyrimidin(thi)ones: Carbonic anhydrase profiling and antiproliferative activity. RSC Med. Chem., 2024, 15(6), 1929-1941. doi: 10.1039/D4MD00101J PMID: 38911163
  6. Supuran, C.T. Carbonic anhydrase inhibitors in the treatment and prophylaxis of obesity. Expert Opin. Ther. Pat., 2003, 13(10), 1545-1550. doi: 10.1517/13543776.13.10.1545
  7. Ciccone, L.; Cerri, C.; Nencetti, S.; Orlandini, E. Carbonic anhydrase inhibitors and epilepsy: State of the art and future perspectives. Molecules, 2021, 26(21), 6380. doi: 10.3390/molecules26216380 PMID: 34770789
  8. Capasso, C.; Supuran, C.T. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin. Ther. Targets, 2015, 19(12), 1689-1704. doi: 10.1517/14728222.2015.1067685 PMID: 26235676
  9. Supuran, C.T.; Scozzafava, A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg. Med. Chem., 2007, 15(13), 4336-4350. doi: 10.1016/j.bmc.2007.04.020 PMID: 17475500
  10. Kumar, D.; Kumar, M.N.; Ghosh, S.; Shah, K. Novel bis(indolyl)hydrazide–hydrazones as potent cytotoxic agents. Bioorg. Med. Chem. Lett., 2012, 22(1), 212-215. doi: 10.1016/j.bmcl.2011.11.031 PMID: 22123320
  11. Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide–hydrazone derivatives. Eur. J. Med. Chem., 2014, 76, 539-548. doi: 10.1016/j.ejmech.2014.02.026 PMID: 24607878
  12. Salgın-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, Ö.; Köysal, Y.; Kılıç, E.; Işık, Ş.; Aktay, G.; Özalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751. doi: 10.1016/j.bmc.2007.06.006 PMID: 17587585
  13. Şenkardeş, S.; Kaushik-Basu, N.; Durmaz, İ.; Manvar, D.; Basu, A.; Atalay, R.; Küçükgüzel, Ş.G. Synthesis of novel diflunisal hydrazide–hydrazones as anti-hepatitis C virus agents and hepatocellular carcinoma inhibitors. Eur. J. Med. Chem., 2016, 108, 301-308. doi: 10.1016/j.ejmech.2015.10.041 PMID: 26695731
  14. Settypalli, T.; Chunduri, V.R.; Maddineni, A.K.; Begari, N.; Allagadda, R.; Kotha, P.; Chippada, A.R. Design, synthesis, in silico docking studies and biological evaluation of novel quinoxaline-hydrazide hydrazone-1,2,3-triazole hybrids as α-glucosidase inhibitors and antioxidants. New J. Chem., 2019, 43(38), 15435-15452. doi: 10.1039/C9NJ02580D
  15. Taha, M.; Ismail, N.H.; Baharudin, M.S.; Lalani, S.; Mehboob, S.; Khan, K.M. yousuf, S.; Siddiqui, S.; Rahim, F.; Choudhary, M.I. Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Med. Chem. Res., 2015, 24(3), 1310-1324. doi: 10.1007/s00044-014-1213-8
  16. Upegui, Y.; Rios, K.; Quiñones, W.; Echeverri, F.; Archbold, R.; Murillo, J.D.; Torres, F.; Escobar, G.; Vélez, I.D.; Robledo, S.M. Chroman-4-one hydrazones derivatives: Synthesis, characterization, and in vitro and in vivo antileishmanial effects. Med. Chem. Res., 2019, 28(12), 2184-2199. doi: 10.1007/s00044-019-02446-x
  17. Bianco, G.; Meleddu, R.; Distinto, S.; Cottiglia, F.; Gaspari, M.; Melis, C.; Corona, A.; Angius, R.; Angeli, A.; Taverna, D.; Alcaro, S.; Leitans, J.; Kazaks, A.; Tars, K.; Supuran, C.T.; Maccioni, E. N -acylbenzenesulfonamide dihydro-1,3,4-oxadiazole hybrids: Seeking selectivity toward carbonic anhydrase isoforms. ACS Med. Chem. Lett., 2017, 8(8), 792-796. doi: 10.1021/acsmedchemlett.7b00205 PMID: 28835790
  18. Eldeeb, A.H.; Abo-Ashour, M.F.; Angeli, A.; Bonardi, A.; Lasheen, D.S.; Elrazaz, E.Z.; Nocentini, A.; Gratteri, P.; Abdel-Aziz, H.A.; Supuran, C.T. Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur. J. Med. Chem., 2021, 221, 113486. doi: 10.1016/j.ejmech.2021.113486 PMID: 33965860
  19. Güleç, Ö.; Türkeş, C.; Arslan, M.; Demir, Y.; Dincer, B.; Ece, A.; Beydemir, Ş. Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions. J. Biomol. Struct. Dyn., 2024, 42(12), 6359-6377. doi: 10.1080/07391102.2023.2240889 PMID: 37540185
  20. D’Agostino, I.; Mathew, G.E.; Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Angeli, A.; Carradori, S.; Marinacci, B.; Menghini, L.; Abdelgawad, M.A.; Ghoneim, M.M.; Mathew, B.; Supuran, C.T. Biological investigation of N -methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 986-993. doi: 10.1080/14756366.2022.2055009 PMID: 35322729
  21. D’Agostino, I.; Zara, S.; Carradori, S.; De Luca, V.; Capasso, C.; Kocken, C.H.M.; Zeeman, A.M.; Angeli, A.; Carta, F.; Supuran, C.T. Antimalarial agents targeting Plasmodium falciparum carbonic anhydrase: Towards artesunate hybrid compounds with dual mechanism of action. ChemMedChem, 2023, 18(21), e202300267. doi: 10.1002/cmdc.202300267 PMID: 37697903
  22. Yung-Chi, C.; Prusoff, W.H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol., 1973, 22(23), 3099-3108. doi: 10.1016/0006-2952(73)90196-2 PMID: 4202581
  23. Angeli, A.; Chelli, I.; Lucarini, L.; Sgambellone, S.; Marri, S.; Villano, S.; Ferraroni, M.; De Luca, V.; Capasso, C.; Carta, F.; Supuran, C.T. Novel carbonic anhydrase inhibitors with dual-tail core sulfonamide show potent and lasting effects for glaucoma therapy. J. Med. Chem., 2024, 67(4), 3066-3089. doi: 10.1021/acs.jmedchem.3c02254 PMID: 38266245
  24. Schrödinger, 1st ed; Schrödinger, LLC: New York, 2024.
  25. Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput., 2021, 17(7), 4291-4300. doi: 10.1021/acs.jctc.1c00302 PMID: 34096718
  26. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749. doi: 10.1021/jm0306430 PMID: 15027865
  27. Desmond molecular dynamics system. In: Maestro-Desmond Interoperability Tools; Schrödinger: New York, 2024.
  28. Abascal, J.L.F.; Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys., 2005, 123(23), 234505. doi: 10.1063/1.2121687 PMID: 16392929
  29. Coşar, E.D.; Dincel, E.D.; Demiray, S.; Sucularlı, E.; Tüccaroğlu, E.; Özsoy, N.; Ulusoy-Güzeldemirci, N. Anticholinesterase activities of novel indole-based hydrazide-hydrazone derivatives: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. J. Mol. Struct., 2022, 1247, 131398. doi: 10.1016/j.molstruc.2021.131398
  30. Kucukoglu, K.; Gul, H.I.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg. Chem., 2019, 86, 316-321. doi: 10.1016/j.bioorg.2019.02.008 PMID: 30743172
  31. Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem., 1971, 246(8), 2561-2573. doi: 10.1016/S0021-9258(18)62326-9 PMID: 4994926
  32. Ece, A.; Sevin, F. Exploring QSAR on 4-Cyclohexylmethoxypyrimidines as antitumor agents for their inhibitory activity of CDK2. Lett. Drug Des. Discov., 2010, 7(9), 625-631. doi: 10.2174/157018010792929612
  33. Chan, K.; Frankish, N.; Zhang, T.; Ece, A.; Cannon, A.; O’Sullivan, J.; Sheridan, H. Bioactive indanes: Insight into the bioactivity of indane dimers related to the lead anti-inflammatory molecule PH46A. J. Pharm. Pharmacol., 2020, 72(7), 927-937. doi: 10.1111/jphp.13269 PMID: 32301120
  34. Başoğlu, F.; Ulusoy-Güzeldemirci, N.; Akalın-Çiftçi, G.; Çetinkaya, S.; Ece, A. Novel imidazo2,1‐ bthiazole‐based anticancer agents as potential focal adhesion kinase inhibitors: Synthesis, in silico and in vitro evaluation. Chem. Biol. Drug Des., 2021, 98(2), 270-282. doi: 10.1111/cbdd.13896 PMID: 34021971
  35. Efeoglu, C.; Taskin, S.; Selcuk, O.; Celik, B.; Tumkaya, E.; Ece, A.; Sari, H.; Seferoglu, Z.; Ayaz, F.; Nural, Y. Synthesis, anti-inflammatory activity, inverse molecular docking, and acid dissociation constants of new naphthoquinone-thiazole hybrids. Bioorg. Med. Chem., 2023, 95, 117510. doi: 10.1016/j.bmc.2023.117510 PMID: 37926047
  36. Ece, A. Computer-aided drug design. BMC Chem., 2023, 17(1), 26. doi: 10.1186/s13065-023-00939-w PMID: 36964610
  37. Yamali, C.; Gul, H.I.; Tugrak Sakarya, M.; Nurpelin Saglik, B.; Ece, A.; Demirel, G.; Nenni, M.; Levent, S.; Cihat Oner, A. Quinazolinone-based benzenesulfonamides with low toxicity and high affinity as monoamine oxidase-A inhibitors: Synthesis, biological evaluation and induced-fit docking studies. Bioorg. Chem., 2022, 124, 105822. doi: 10.1016/j.bioorg.2022.105822 PMID: 35500503

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers