Acyl Urea Compounds Therapeutics and its Inhibition for Cancers in Women: A Review
- Authors: Kumari P.1, Mishra R.1, Mazumder R.1, Mazumder A.1
-
Affiliations:
- , Noida Institute of Engineering and Technology (Pharmacy Institute)
- Issue: Vol 25, No 2 (2025)
- Pages: 86-98
- Section: Oncology
- URL: https://genescells.com/1871-5206/article/view/694475
- DOI: https://doi.org/10.2174/0118715206330232240913100744
- ID: 694475
Cite item
Full Text
Abstract
Acyl urea compounds have garnered significant attention in cancer therapeutics, particularly for their potential effectiveness against cancers that predominantly affect women, such as breast and ovarian cancers. The paper presents a report on the investigation of acyl urea compounds that are reported to involve a multi-faceted approach, including synthetic chemistry, biological assays, and computational modeling. A wealth of information on acyl urea and its purported effects on cancer affecting women has been gathered from different sources and condensed to provide readers with a broad understanding of the role of acyl urea in combating cancer. Acylureas demonstrate promising results by selectively inhibiting key molecular targets associated with cancer progressions, such as EGFR, ALK, HER2, and the Wnt/β-catenin signaling pathway. Specifically, targeting acyl ureas impedes tumor proliferation and metastasis while minimizing harm to healthy tissues, offering a targeted therapeutic approach with reduced side effects compared to conventional chemotherapy. Continued research and clinical trials are imperative to optimize the efficacy and safety profiles of acylurea-based therapies and broaden their applicability across various cancer types. Acyl urea compounds represent a promising class of therapeutics for the treatment of cancers in women, particularly due to their ability to selectively inhibit key molecular targets involved in tumor growth and progression. The combination of synthetic optimization, biological evaluation, and computational modeling has facilitated the identification of several lead compounds with significant anticancer potential. This abstract explores the therapeutic mechanisms and targeted pathways of acyl ureas in combating these malignancies, which will be useful for future studies.
Keywords
About the authors
Preeti Kumari
, Noida Institute of Engineering and Technology (Pharmacy Institute)
Email: info@benthamscience.net
Rakhi Mishra
, Noida Institute of Engineering and Technology (Pharmacy Institute)
Author for correspondence.
Email: info@benthamscience.net
Rupa Mazumder
, Noida Institute of Engineering and Technology (Pharmacy Institute)
Email: info@benthamscience.net
Avijit Mazumder
, Noida Institute of Engineering and Technology (Pharmacy Institute)
Email: info@benthamscience.net
References
- Kumari, P.; Mishra, R.; Mazumder, R.; Mazumder, A.; Singh, A.; Singh, G.; Tyagi, P.K. An insight into common and advanced synthesis methodologies of acyl urea analogs targeting the CNS. Lett. Org. Chem., 2024, 21(12), 1006-1022. doi: 10.2174/0115701786303718240409044341
- Chaudhary, R.; Shuaib, M.; Hashim, S.R.; Mishra, P.S. Synthesis, characterization and antitumor potential of cinnamoyl urea derivatives. Asian J. Chem., 2016, 28(2), 410-414. doi: 10.14233/ajchem.2016.19403
- Mishra, R.; Mazumder, A.; Mazumder, R.; Mishra, P.S.; Chaudhary, P. Docking study and result conclusion of heterocyclic derivatives having urea and acyl moiety. Asian J. Biomed. Pharm. Sci., 2019, 9(67), 13. doi: 10.35841/2249-622X.67.19-082
- Martinez, M.E.; Schmeler, K.M.; Lajous, M.; Newman, L.A. Cancer screening in low- and middle-income countries. Am. Soc. Clin. Oncol. Educ. Book, 2024, 44(3), e431272. doi: 10.1200/EDBK_431272 PMID: 38843475
- Saggu, S.; Rehman, H.; Abbas, Z.K.; Ansari, A.A. Recent incidence and descriptive epidemiological survey of breast cancer in Saudi Arabia. Saudi Med. J., 2015, 36(10), 1176-1180. doi: 10.15537/smj.2015.10.12268 PMID: 26446327
- Basudan, A. Breast cancer incidence patterns in the Saudi female population: A 17-year retrospective analysis. Medicina, 2022, 58(11), 1617. doi: 10.3390/medicina58111617 PMID: 36363574
- Ye, F.; Dewanjee, S.; Li, Y.; Jha, N.K.; Chen, Z.S.; Kumar, A. Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer, 2023, 22(1), 105. doi: 10.1186/s12943-023-01805-y PMID: 37415164
- Gide, T.N.; Wilmott, J.S.; Scolyer, R.A.; Long, G.V. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin. Cancer Res., 2018, 24(6), 1260-1270. doi: 10.1158/1078-0432.CCR-17-2267 PMID: 29127120
- Thanopoulou, E.; Khader, L.; Caira, M.; Wardley, A.; Ettl, J.; Miglietta, F.; Neven, P.; Guarneri, V. Therapeutic strategies for the management of hormone receptor-positive, human epidermal growth factor receptor 2-positive (HR+/HER2+) breast cancer: a review of the current literature. Cancers (Basel), 2020, 12(11), 3317. doi: 10.3390/cancers12113317 PMID: 33182657
- Fontana, F.; Anselmi, M.; Limonta, P. Molecular mechanisms of cancer drug resistance: emerging biomarkers and promising targets to overcome tumor progression. Cancers (Basel), 2022, 14(7), 1614. doi: 10.3390/cancers14071614 PMID: 35406386
- Pal, S.K.; Hurria, A. Impact of age, sex, and comorbidity on cancer therapy and disease progression. J. Clin. Oncol., 2010, 28(26), 4086-4093. doi: 10.1200/JCO.2009.27.0579 PMID: 20644100
- Oglat, A.A.; Hasan, H. khalil, T.A.; Yahia, A.M.H.; Fawaz, A.H. Study of North Jordanian women’s knowledge of breast cancer causes and medical imaging screening advantages. Inform. Med. Unlocked, 2024, 47, 101490. doi: 10.1016/j.imu.2024.101490
- Gubbels, J.A.A.; Claussen, N.; Kapur, A.K.; Connor, J.P.; Patankar, M.S. The detection, treatment, and biology of epithelial ovarian cancer. J. Ovarian Res., 2010, 3(1), 8. doi: 10.1186/1757-2215-3-8 PMID: 20350313
- Faridi, R.; Zahra, A.; Khan, K.; Idrees, M. Oncogenic potential of Human Papillomavirus (HPV) and its relation with cervical cancer. Virol. J., 2011, 8(1), 269. doi: 10.1186/1743-422X-8-269 PMID: 21635792
- Esmaeilzadeh, A.A.; Nasirzadeh, F. Uterus Cancer. Eurasian J. Chem. Med. Petroleum Res., 2023, 2(5), 63-83.
- McCaughan, E.; Prue, G.; Parahoo, K.; McIlfatrick, S.; McKenna, H. Exploring and comparing the experience and coping behaviour of men and women with colorectal cancer after chemotherapy treatment: a qualitative longitudinal study. Psychooncology, 2012, 21(1), 64-71. doi: 10.1002/pon.1871 PMID: 21132680
- Corrales, L.; Rosell, R.; Cardona, A.F.; Martín, C.; Zatarain-Barrón, Z.L.; Arrieta, O. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Crit. Rev. Oncol. Hematol., 2020, 148, 102895. doi: 10.1016/j.critrevonc.2020.102895 PMID: 32062313
- Kumar, P.; Mangla, B.; Javed, S.; Ahsan, W.; Musyuni, P.; Sivadasan, D.; Alqahtani, S.S.; Aggarwal, G. A review of nanomaterials from synthetic and natural molecules for prospective breast cancer nanotherapy. Front. Pharmacol., 2023, 14, 1149554. doi: 10.3389/fphar.2023.1149554 PMID: 37274111
- Li, W.; Sun, Q.; Song, L.; Gao, C.; Liu, F.; Chen, Y.; Jiang, Y. Discovery of 1-(3-aryl-4-chlorophenyl)-3-(p -aryl)urea derivatives against breast cancer by inhibiting PI3K/Akt/mTOR and Hedgehog signalings. Eur. J. Med. Chem., 2017, 141, 721-733. doi: 10.1016/j.ejmech.2017.09.002 PMID: 29107429
- Tossetta, G.; Marzioni, D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol. Res., 2022, 183, 106365. doi: 10.1016/j.phrs.2022.106365 PMID: 35901941
- Baird, L.; Kensler, T.W.; Yamamoto, M. Novel NRF2 ‐activated cancer treatments utilizing synthetic lethality. IUBMB Life, 2022, 74(12), 1209-1231. doi: 10.1002/iub.2680 PMID: 36200139
- Listro, R.; Rossino, G.; Piaggi, F.; Sonekan, F.F.; Rossi, D.; Linciano, P.; Collina, S. Urea-based anticancer agents. Exploring 100-years of research with an eye to the future. Front Chem., 2022, 10, 995351. doi: 10.3389/fchem.2022.995351 PMID: 36186578
- Alharbi, W. Advancement and recent trends in seeking less toxic and more active anti-cancer drugs: Insights into thiourea based molecules. Main Group Chem., 2022, 21(3), 885-901. doi: 10.3233/MGC-210183
- El-Atawy, M.A.; Alsubaie, M.S.; Alazmi, M.L.; Hamed, E.A.; Hanna, D.H.; Ahmed, H.A.; Omar, A.Z. Synthesis, characterization, and anticancer activity of new N, N′-Diarylthiourea derivative against breast cancer cells. Molecules, 2023, 28(17), 6420. doi: 10.3390/molecules28176420 PMID: 37687250
- Tabatabai, S.A.; Nazari, M.; Rezaee, E. A Comprehensive review of soluble epoxide hyådrolase inhibitors evaluating their structure-activity relationship. Mini Rev. Med. Chem., 2023, 23(1), 99-117. doi: 10.2174/1389557522666220531152812 PMID: 35642113
- Subbaiah, M.A.M.; Meanwell, N.A. Bio isosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem., 2021, 64(19), 14046-14128. doi: 10.1021/acs.jmedchem.1c01215 PMID: 34591488
- Acosta-Guzmán, P.; Ojeda-Porras, A.; Gamba-Sánchez, D. Contemporary approaches for amide bond formation. Adv. Synth. Catal., 2023, 365(24), 4359-4391. doi: 10.1002/adsc.202301018
- Qian, L.; Lin, X.; Gao, X.; Khan, R.U.; Liao, J.Y.; Du, S.; Ge, J.; Zeng, S.; Yao, S.Q. The dawn of a new era: targeting the “undruggables” with antibody-based therapeutics. Chem. Rev., 2023, 123(12), 7782-7853. doi: 10.1021/acs.chemrev.2c00915 PMID: 37186942
- Lee, P.Y.; Md Azhan, F.S.; Low, T.Y. Biomarkers for colorectal cancer chemotherapy: Recent updates and future perspective. Malays. J. Pathol., 2023, 45(3), 317-331. PMID: 38155375
- Ohhara, Y.; Fukuda, N.; Takeuchi, S.; Honma, R.; Shimizu, Y.; Kinoshita, I.; Dosaka-Akita, H. Role of targeted therapy in metastatic colorectal cancer. World J. Gastrointest. Oncol., 2016, 8(9), 642-655. doi: 10.4251/wjgo.v8.i9.642 PMID: 27672422
- Nikolaou, S.; Qiu, S.; Fiorentino, F.; Rasheed, S.; Tekkis, P.; Kontovounisios, C. The prognostic and therapeutic role of hormones in colorectal cancer: a review. Mol. Biol. Rep., 2019, 46(1), 1477-1486. doi: 10.1007/s11033-018-4528-6 PMID: 30535551
- Surdu, S. Non-melanoma skin cancer: occupational risk from UV light and arsenic exposure. Rev. Environ. Health, 2014, 29(3), 255-264. doi: 10.1515/reveh-2014-0040 PMID: 25222586
- Tobias, J.S.; Hochhauser, D. Cancer and its management; John Wiley & Sons, 2014. doi: 10.1002/9781118468753
- Baudino, T. Targeted cancer therapy: the next generation of cancer treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20. doi: 10.2174/1570163812666150602144310 PMID: 26033233
- Ilić, I.; Cvetković, J.; Ilić, R.; Cvetković, L.; Milićević, A.; Todorović, S.; Ranđelović, P. Differences in histological subtypes of invasive lobular breast carcinoma according to immunohistochemical molecular classification. Diagnostics (Basel), 2024, 14(6), 660. doi: 10.3390/diagnostics14060660 PMID: 38535080
- Venetis, K. Breast cancer during pregnancy as a special type of early-onset breast cancer: analysis of the tumor immune microenvironment and risk profiles. Cells, 2022, 11(15), 2286. doi: 10.3390/cells11152286
- Alsner, J.; Yilmaz, M.; Guldberg, P.; Hansen, L.L.; Overgaard, J. Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients. Clin. Cancer Res., 2000, 6(10), 3923-3931. PMID: 11051239
- Anderson, W.F.; Jatoi, I.; Tse, J.; Rosenberg, P.S. Male breast cancer: a population-based comparison with female breast cancer. J. Clin. Oncol., 2010, 28(2), 232-239. doi: 10.1200/JCO.2009.23.8162 PMID: 19996029
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106. doi: 10.1016/j.gendis.2018.05.001 PMID: 30258937
- Parker, M.G. Structure and function of estrogen receptors. Vitam. Horm., 1995, 51, 267-287. doi: 10.1016/S0083-6729(08)61041-9 PMID: 7483324
- Platet, N.; Cathiard, A.M.; Gleizes, M.; Garcia, M. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit. Rev. Oncol. Hematol., 2004, 51(1), 55-67. doi: 10.1016/j.critrevonc.2004.02.001 PMID: 15207254
- Miricescu, D.; Totan, A.; Stanescu-Spinu, I.I.; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int. J. Mol. Sci., 2020, 22(1), 173. doi: 10.3390/ijms22010173 PMID: 33375317
- Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev., 2010, 29(3), 405-434. doi: 10.1007/s10555-010-9235-2 PMID: 20737283
- Moyer, C.L.; Brown, P.H. Targeting nuclear hormone receptors for the prevention of breast cancer. Front. Med. (Lausanne), 2023, 10, 1200947. doi: 10.3389/fmed.2023.1200947 PMID: 37583424
- Zhou, B.; Zhang, B.; Li, X.; Liu, X.; Li, H.; Li, D.; Cui, Z.; Geng, H.; Zhou, L. New 2-aryl-9-methyl-β-carbolinium salts as potential acetylcholinesterase inhibitor agents: synthesis, bioactivity and structure–activity relationship. Sci. Rep., 2018, 8(1), 1559. doi: 10.1038/s41598-018-19999-3 PMID: 29367595
- Swarbrick, M.E.; Beswick, P.J.; Gleave, R.J.; Green, R.H.; Bingham, S.; Bountra, C.; Carter, M.C.; Chambers, L.J.; Chessell, I.P.; Clayton, N.M.; Collins, S.D.; Corfield, J.A.; Hartley, C.D.; Kleanthous, S.; Lambeth, P.F.; Lucas, F.S.; Mathews, N.; Naylor, A.; Page, L.W.; Payne, J.J.; Pegg, N.A.; Price, H.S.; Skidmore, J.; Stevens, A.J.; Stocker, R.; Stratton, S.C.; Stuart, A.J.; Wiseman, J.O. Identification of 4-4-(methylsulfonyl)phenyl-6-(trifluoromethyl)-2-pyrimidinyl amines and ethers as potent and selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(15), 4504-4508. doi: 10.1016/j.bmcl.2009.02.085 PMID: 19520573
- Huynh, H.; Ngo, V.C.; Fargnoli, J.; Ayers, M.; Soo, K.C.; Koong, H.N.; Thng, C.H.; Ong, H.S.; Chung, A.; Chow, P.; Pollock, P.; Byron, S.; Tran, E. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin. Cancer Res., 2008, 14(19), 6146-6153. doi: 10.1158/1078-0432.CCR-08-0509 PMID: 18829493
- Arora, S.; Agarwal, S.; Singhal, S. Anticancer activities of thiosemicarbazides/thiosemicarbazones: a review. Int. J. Pharm. Pharm. Sci., 2014, 6(9), 34-41.
- Pietrobono, S.; Stecca, B. Targeting the oncoprotein smoothened by small molecules: focus on novel acylguanidine derivatives as potent smoothened inhibitors. Cells, 2018, 7(12), 272. doi: 10.3390/cells7120272 PMID: 30558232
- Moreira, E.; Paulino, E.; Ingles, G.Á.H.; Fontes, M.S.; Saramago, M.; de Moraes, F.; Thuler, L.C.S.; de Melo, A.C. Efficacy of doxorubicin after progression on carboplatin and paclitaxel in advanced or recurrent endometrial cancer: a retrospective analysis of patients treated at the Brazilian National Cancer Institute (INCA). Med. Oncol., 2018, 35(3), 20. doi: 10.1007/s12032-018-1086-7 PMID: 29387971
- Carlson, M.J.; Thiel, K.W.; Leslie, K.K. Past, present, and future of hormonal therapy in recurrent endometrial cancer. Int. J. Womens Health, 2014, 6, 429-435. PMID: 24833920
- Green, A.K.; Feinberg, J.; Makker, V. A review of immune checkpoint blockade therapy in endometrial cancer. Am. Soc. Clin. Oncol. Educ. Book, 2020, 40(40), 238-244. doi: 10.1200/EDBK_280503 PMID: 32213091
- De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103(8), 645-661. doi: 10.1093/jnci/djr093 PMID: 21464397
- Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2843-2855. doi: 10.1016/j.bmc.2013.04.013 PMID: 23628470
- Zhang, C.; Sheng, M.; lv, J.; Cao, Y.; Chen, D.; Jia, L.; Sun, Y.; Ren, Y.; Li, L.; Weng, Y.; Yu, W. Single-cell analysis reveals the immune heterogeneity and interactions in lungs undergoing hepatic ischemia–reperfusion. Int. Immunopharmacol., 2023, 124(Pt B), 111043. doi: 10.1016/j.intimp.2023.111043 PMID: 37844464
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers, 2021, 7(1), 3. doi: 10.1038/s41572-020-00235-0 PMID: 33446664
- Erhunmwunsee, L.; Wing, S.E.; Zou, X.; Coogan, P.; Palmer, J.R.; Lennie Wong, F. Neighborhood disadvantage and lung cancer risk in a national cohort of never smoking Black women. Lung Cancer, 2022, 173, 21-27. doi: 10.1016/j.lungcan.2022.08.022 PMID: 36108579
- Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data. Braz. J. Med. Biol. Res., 2014, 47(11), 929-939. doi: 10.1590/1414-431X20144099 PMID: 25296354
- Zhao, Y.; Ye, X.; Xiong, Z.; Ihsan, A.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Anadón, A.; Wang, X.; Martínez, M.A. Cancer metabolism: the role of ROS in DNA damage and induction of apoptosis in cancer cells. Metabolites, 2023, 13(7), 796. doi: 10.3390/metabo13070796 PMID: 37512503
- Palmirotta, R.; Quaresmini, D.; Lovero, D.; Mannavola, F.; Dammacco, F.; Silvestris, F. Gene fusion in NSCLC: ALK, ROS1, RET, and related treatments. In: Oncogenomics; Academic Press, 2019; pp. 443-464. doi: 10.1016/B978-0-12-811785-9.00031-4
- Motofei, I.G. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin. Cancer Biol., 2022, 86(Pt 3), 600-615. doi: 10.1016/j.semcancer.2021.10.003 PMID: 34695580
- Zahra, U.; Saeed, A.; Abdul, T.; Flörke, U.; Erben, M.F. Recent trends in chemistry, structure, and various applications of 1-acyl-3-substituted thioureas: a detailed review. RSC Advances, 2022, 12(20), 12710-12745. doi: 10.1039/D2RA01781D PMID: 35496330
- Sookai, S.; Akerman, M.P.; Munro, O.Q. Chiral Au(III) chelates exhibit unique NCI-60 cytotoxicity profiles and interactions with human serum albumin. Dalton Trans., 2024, 53(11), 5089-5104. doi: 10.1039/D3DT04024K PMID: 38375922
- Wang, J.Q.; Wang, B.; Ma, L.Y.; Shi, Z.; Liu, H.M.; Liu, Z.; Chen, Z.S. Enhancement of anticancer drug sensitivity in multidrug resistance cells overexpressing ATP-binding cassette (ABC) transporter ABCC10 by CP55, a synthetic derivative of 5-cyano-6-phenylpyrimidin. Exp. Cell Res., 2021, 405(2), 112728. doi: 10.1016/j.yexcr.2021.112728 PMID: 34246653
- Samarghandian, S.; Boskabady, M.; Davoodi, S. Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.) in human lung cancer cell line. Pharmacogn. Mag., 2010, 6(24), 309-314. doi: 10.4103/0973-1296.71799 PMID: 21120034
- Alven, S.; Nqoro, X.; Buyana, B.; Aderibigbe, B.A. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer. Pharmaceutics, 2020, 12(5), 406. doi: 10.3390/pharmaceutics12050406 PMID: 32365495
- Fong, K.M.; Zimmerman, P.V.; Smith, P.J. Lung pathology: the molecular genetics of non-small cell lung cancer. Pathology, 1995, 27(4), 295-301. doi: 10.1080/00313029500169173 PMID: 8771143
- Chu, Q.; Vincent, M.; Logan, D.; Mackay, J.A.; Evans, W.K. Taxanes as first-line therapy for advanced non-small cell lung cancer: A systematic review and practice guideline. Lung Cancer, 2005, 50(3), 355-374. doi: 10.1016/j.lungcan.2005.06.010 PMID: 16139391
- König, D.; Savic, S.; Rothschild, S.I. Targeted therapy in advanced and metastatic non-small cell lung cancer. An update on treatment of the most important actionable oncogenic driver alterations. Cancers (Basel), 2021, 13(4), 804. doi: 10.3390/cancers13040804 PMID: 33671873
- Wen, H.; Lin, X.; Sun, D. The association between different hormone replacement therapy use and the incidence of lung cancer: a systematic review and meta-analysis. J. Thorac. Dis., 2022, 14(2), 381-395. doi: 10.21037/jtd-22-48 PMID: 35280481
- S Cheng, E. Weber, M.; Steinberg, J.; Qin Yu, X. Lung cancer risk in never-smokers: An overview of environmental and genetic factors. Chin. J. Cancer Res., 2021, 33(5), 548-562. doi: 10.21147/j.issn.1000-9604.2021.05.02 PMID: 34815629
- Mundel, R.; Dhadwal, S.; Bharti, S.; Chatterjee, M. A comprehensive overview of various cancer types and their progression. In: Handbook of Oncobiology: From Basic to Clinical Sciences; Springer, 2024.
- Lortet-Tieulent, J.; Renteria, E.; Sharp, L.; Weiderpass, E.; Comber, H.; Baas, P.; Bray, F.; Coebergh, J.W.; Soerjomataram, I. Convergence of decreasing male and increasing female incidence rates in major tobacco-related cancers in Europe in 1988–2010. Eur. J. Cancer, 2015, 51(9), 1144-1163. doi: 10.1016/j.ejca.2013.10.014 PMID: 24269041
- Streba, L.; Popovici, V.; Mihai, A.; Mititelu, M.; Lupu, C.E.; Matei, M.; Vladu, I.M.; Iovănescu, M.L.; Cioboată, R.; Călărașu, C.; Busnatu, Ș.S.; Streba, C.T. Integrative approach to risk factors in simple chronic obstructive airway diseases of the lung or associated with metabolic syndrome-analysis and prediction. Nutrients, 2024, 16(12), 1851. doi: 10.3390/nu16121851 PMID: 38931206
- Tomlinson, I.; Ilyas, M.; Johnson, V.; Davies, A.; Clark, G.; Talbot, I.; Bodmer, W. A comparison of the genetic pathways involved in the pathogenesis of three types of colorectal cancer. J. Pathol., 1998, 184(2), 148-152.
- Testa, U.; Pelosi, E.; Castelli, G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med. Sci. (Basel), 2018, 6(2), 31. doi: 10.3390/medsci6020031 PMID: 29652830
- Sladoljev, K.; Perin, E.; Ferrari, A.M.; Klarić, M.; Brnčić-Fischer, A.; Eminović, S.; Vrdoljak-Mozetič, D.; Babarovic, E. Relapsed ovarian high-grade serous carcinoma with long-term survival associated with synchronous primary squamous cell carcinoma of the colon. Proceed. obstet. gynecol., 2018, 8(2), 1398. doi: 10.17077/2154-4751.1398
- Miettinen, M.; Lasota, J. Gastrointestinal stromal tumors (GISTs): definition, occurrence, pathology, differential diagnosis and molecular genetics. Pol. J. Pathol., 2003, 54(1), 3-24. PMID: 12817876
- Koniaris, L.G.; Drugas, G.; Katzman, P.J.; Salloum, R. Management of gastrointestinal lymphoma. J. Am. Coll. Surg., 2003, 197(1), 127-141. doi: 10.1016/S1072-7515(03)00002-4 PMID: 12831934
- Bardhan, K.; Liu, K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel), 2013, 5(2), 676-713. doi: 10.3390/cancers5020676 PMID: 24216997
- Helwig, E.B. Adenomas and the pathogenesis of cancer of the colon and rectum. Dis. Colon Rectum, 1959, 2(1), 5-17. doi: 10.1007/BF02616613 PMID: 13639806
- Abinaya, R.; Srinath, S.; Soundarya, S.; Sridhar, R.; Balasubramanian, K.K.; Baskar, B. Recent developments on synthesis strategies, SAR studies and biological activities of β-Carboline derivatives–an update. J. Mol. Struct., 2022, 1261, 132750. doi: 10.1016/j.molstruc.2022.132750
- Gutiérrez, T.J. Editorial: Bioengineered nanoparticles in cancer therapy, Volume III. Front. Mol. Biosci., 2024, 11, 1356081. doi: 10.3389/fmolb.2024.1356081 PMID: 38455767
- Al-Mahadeen, M.M.; Jaber, A.M.; Al-Najjar, B.O. Design, synthesis and biological evaluation of novel 2-hydroxy-1 H-indene-1,3(2 H)-dione derivatives as FGFR1 inhibitors. Pharmacia, 2024, 71, 1-9. doi: 10.3897/pharmacia.71.e122127
- Huang, H.L.; Lee, H.Y.; Tsai, A.C.; Peng, C.Y.; Lai, M.J.; Wang, J.C.; Pan, S.L.; Teng, C.M.; Liou, J.P. Anticancer activity of MPT0E028, a novel potent histone deacetylase inhibitor, in human colorectal cancer HCT116 cells in vitro and in vivo. PLoS One, 2012, 7(8), e43645. doi: 10.1371/journal.pone.0043645
- Banerjee, S.; Adhikari, N.; Amin, S.A.; Jha, T. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur. J. Med. Chem., 2019, 164, 214-240. doi: 10.1016/j.ejmech.2018.12.039 PMID: 30594678
- Wang, Y.; Tortorella, M. Molecular design of dual inhibitors of PI3K and potential molecular target of cancer for its treatment: A review. Eur. J. Med. Chem., 2022, 228, 114039. doi: 10.1016/j.ejmech.2021.114039 PMID: 34894440
- Biganzoli, L.; Cufer, T.; Bruning, P.; Coleman, R.; Duchateau, L.; Calvert, A.H.; Gamucci, T.; Twelves, C.; Fargeot, P.; Epelbaum, R.; Lohrisch, C.; Piccart, M.J. Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The european organization for research and treatment of cancer 10961 multicenter phase III trial. J. Clin. Oncol., 2002, 20(14), 3114-3121. doi: 10.1200/JCO.2002.11.005 PMID: 12118025
- Lumachi, F.; Brunello, A.; Maruzzo, M.; Basso, U.; Basso, S. Treatment of estrogen receptor-positive breast cancer. Curr. Med. Chem., 2013, 20(5), 596-604. doi: 10.2174/092986713804999303 PMID: 23278394
- Zhang, T.; Xu, J.; Deng, S.; Zhou, F.; Li, J.; Zhang, L.; Li, L.; Wang, Q.E.; Li, F. Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data. PLoS One, 2018, 13(5), e0196351. doi: 10.1371/journal.pone.0196351 PMID: 29723215
- Smolle, E.; Taucher, V.; Pichler, M.; Petru, E.; Lax, S.; Haybaeck, J. Targeting signaling pathways in epithelial ovarian cancer. Int. J. Mol. Sci., 2013, 14(5), 9536-9555. doi: 10.3390/ijms14059536 PMID: 23644885
- Lambert, J.M.; Chari, R.V. Ado-trastuzumab emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem., 2014, 57(16), 6949-6964. doi: 10.1021/jm500766w
- Parmar, M.K.; Ledermann, J.A.; Colombo, N.; Du Bois, A.; Delaloye, J.F.; Kristensen, G.B.; Wheeler, S.; Swart, A.M.; Qian, W.; Torri, V.; Floriani, I.; Jayson, G.; Lamont, A.; Tropé, C. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet, 2003, 361(9375), 2099-2106. doi: 10.1016/S0140-6736(03)13718-X PMID: 12826431
- Rodrigues, C.; Joy, L.R.; Sachithanandan, S.P.; Krishna, S. Notch signalling in cervical cancer. Exp. Cell Res., 2019, 385(2), 111682. doi: 10.1016/j.yexcr.2019.111682 PMID: 31634483
- Caruso, G.; Tomao, F.; Parma, G.; Lapresa, M.; Multinu, F.; Palaia, I.; Aletti, G.; Colombo, N. Poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian cancer: lessons learned and future directions. Int. J. Gynecol. Cancer, 2023, 33(4), 431-443. doi: 10.1136/ijgc-2022-004149 PMID: 36928097
- Yakkala, P.A.; Penumallu, N.R.; Shafi, S.; Kamal, A. Prospects of topoisomerase inhibitors as promising anti-cancer agents. Pharmaceuticals (Basel), 2023, 16(10), 1456. doi: 10.3390/ph16101456 PMID: 37895927
- Duranti, S.; Pietragalla, A.; Daniele, G.; Nero, C.; Ciccarone, F.; Scambia, G.; Lorusso, D. Role of immune checkpoint inhibitors in cervical cancer: from preclinical to clinical data. Cancers (Basel), 2021, 13(9), 2089. doi: 10.3390/cancers13092089 PMID: 33925884
- Cetraro, P.; Plaza-Diaz, J.; MacKenzie, A.; Abadía-Molina, F. A review of the current impact of inhibitors of apoptosis proteins and their repression in cancer. Cancers (Basel), 2022, 14(7), 1671. doi: 10.3390/cancers14071671 PMID: 35406442
- Song, M.; Chan, A.T. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin. Gastroenterol. Hepatol., 2019, 17(2), 275-289. doi: 10.1016/j.cgh.2018.07.012 PMID: 30031175
- Yermekova, S.; Orazgaliyeva, M.; Goncharova, T.; Rakhimbekova, F.; Dushimova, Z.; Vasilieva, T. Mutational damages in malignant lung tumors. Asian Pac. J. Cancer Prev., 2023, 24(2), 709-716. doi: 10.31557/APJCP.2023.24.2.709 PMID: 36853323
- Li, B.; Jin, J.; Guo, D.; Tao, Z.; Hu, X. Immune checkpoint inhibitors combined with targeted therapy: the recent advances and future potentials. Cancers (Basel), 2023, 15(10), 2858. doi: 10.3390/cancers15102858 PMID: 37345194
- Grassilli, E.; Cerrito, M.G. Emerging actionable targets to treat therapy-resistant colorectal cancers. Cancer Drug Resist., 2022, 5(1), 36-63. doi: 10.20517/cdr.2021.96 PMID: 35582524
- ClinicalTrials. 2022. Available from: https://clinicaltrials.gov/ (accessed on 9-9-2024)
Supplementary files
