The Dual Role of ADAMTS9-AS1 in Various Human Cancers: Molecular Pathogenesis and Clinical Implications
- Authors: He H.1, Yang J.1, Zhou Y.1, Zheng X.1, Chen L.1, Mao Z.1, Liao C.1, Li T.1, Liu H.1, Zhou G.2, Li H.3, Yuan C.1
-
Affiliations:
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine,, China Three Gorges University
- College of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine, China Three Gorges University,
- Issue: Vol 25, No 8 (2025)
- Pages: 533-543
- Section: Chemistry
- URL: https://genescells.com/1871-5206/article/view/694510
- DOI: https://doi.org/10.2174/0118715206359325241119075640
- ID: 694510
Cite item
Full Text
Abstract
Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.1, has garnered significant interest due to its pivotal involvement in the advancement and spread of diverse malignant tumors. ADAMTS9-AS1 functions as a competitive endogenous RNA (ceRNA) that interacts with multiple microRNAs (miRNAs) and plays a crucial role in regulating gene expression and cellular functions by modulating essential signaling pathways, including PI3K/AKT/mTOR, Wnt/β-catenin, and Ras/MAPK pathways. Dysregulation of this factor has been linked to tumor development, migration, invasion, and resistance to apoptotic mechanisms, including as iron-induced apoptosis, underscoring its intricate function in cancer pathology. While current research has clarified certain pathways involved in cancer formation, additional clinical and in vivo investigations are necessary to enhance comprehension of its specific involvement across various cancer types. This review encapsulates the recent discoveries on the correlation of ADAMTS9-AS1 with numerous malignancies, clarifying its molecular mechanisms and its prospective role as a therapeutic target in oncology. Furthermore, it identifies ADAMTS9-AS1 as a potential early diagnostic biomarker and therapeutic target, offering novel opportunities for targeted intervention in oncology.
About the authors
Haodong He
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Jingjie Yang
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Yan Zhou
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Xinyan Zheng
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Lihan Chen
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Zhujun Mao
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Chuyuan Liao
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Tongtong Li
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Haoran Liu
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Email: info@benthamscience.net
Gang Zhou
College of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine,, China Three Gorges University
Author for correspondence.
Email: info@benthamscience.net
Houdong Li
College of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine, China Three Gorges University,
Author for correspondence.
Email: info@benthamscience.net
Chengfu Yuan
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
Author for correspondence.
Email: info@benthamscience.net
References
- Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol., 2021, 220(2), e202009045. doi: 10.1083/jcb.202009045 PMID: 33464299
- Jantrapirom, S.; Koonrungsesomboon, N.; Yoshida, H.; M Candeias, M.; Pruksakorn, D.; Lo Piccolo, L. Long noncoding RNA-dependent methylation of nonhistone proteins. Wiley Interdiscip. Rev. RNA, 2021, 12(6), e1661. doi: 10.1002/wrna.1661 PMID: 33913612
- McCabe, E.M.; Rasmussen, T.P. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin. Cancer Biol., 2021, 75, 38-48. doi: 10.1016/j.semcancer.2020.12.012 PMID: 33346133
- Herman, A.B.; Tsitsipatis, D.; Gorospe, M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell, 2022, 82(12), 2252-2266. doi: 10.1016/j.molcel.2022.05.027 PMID: 35714586
- Nojima, T.; Proudfoot, N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol., 2022, 23(6), 389-406. doi: 10.1038/s41580-021-00447-6 PMID: 35079163
- Pang, B.; Wang, Q.; Ning, S.; Wu, J.; Zhang, X.; Chen, Y.; Xu, S. Landscape of tumor suppressor long noncoding RNAs in breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 79. doi: 10.1186/s13046-019-1096-0 PMID: 30764831
- Tan, Y.T.; Lin, J.F.; Li, T.; Li, J.J.; Xu, R.H.; Ju, H.Q. LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. (Lond.), 2021, 41(2), 109-120. doi: 10.1002/cac2.12108 PMID: 33119215
- Wang, W.; Min, L.; Qiu, X.; Wu, X.; Liu, C.; Ma, J.; Zhang, D.; Zhu, L. Biological function of long non-coding RNA (LncRNA) xist. Front. Cell Dev. Biol., 2021, 9, 645647. doi: 10.3389/fcell.2021.645647 PMID: 34178980
- Zhu, X.; Jiang, S.; Wu, Z.; Liu, T.; Zhang, W.; Wu, L.; Xu, L.; Shao, M. Long non-coding RNA TTN antisense RNA 1 facilitates hepatocellular carcinoma progression via regulating miR-139-5p/SPOCK1 axis. Bioengineered, 2021, 12(1), 578-588. doi: 10.1080/21655979.2021.1882133 PMID: 33517826
- Zhang, Y. LncRNA-encoded peptides in cancer. J. Hematol. Oncol., 2024, 17(1), 66. doi: 10.1186/s13045-024-01591-0 PMID: 39135098
- Yang, G.; Li, Z.; Dong, L.; Zhou, F. lncRNA ADAMTS9-AS1 promotes bladder cancer cell invasion, migration, and inhibits apoptosis and autophagy through PI3K/AKT/mTOR signaling pathway. Int. J. Biochem. Cell Biol., 2021, 140, 106069. doi: 10.1016/j.biocel.2021.106069 PMID: 34428588
- Zhou, C.; Zhao, H.; Wang, S.; Dong, C.; Yang, F.; Zhang, J. LncRNA ADAMTS9-AS1 knockdown suppresses cell proliferation and migration in glioma via down-regulating Wnt/β-catenin signaling pathway. Bosn. J. Basic Med. Sci., 2021, 22(3), 395-402. doi: 10.17305/bjbms.2021.6199 PMID: 34923953
- Javanmard, A.R.; Jahanbakhshi, A.; Nemati, H.; Mowla, S.J.; Soltani, B.M. ADAMTS9-AS1 long non coding RNA sponges miR 128 and miR-150 to regulate ras/MAPK signaling pathway in glioma. Cell. Mol. Neurobiol., 2023, 43(5), 2309-2322. doi: 10.1007/s10571-022-01311-7 PMID: 36449154
- Chen, J.; Cheng, L.; Zou, W.; Wang, R.; Wang, X.; Chen, Z. ADAMTS9-AS1 constrains breast cancer cell invasion and proliferation via sequestering miR-301b-3p. Front. Cell Dev. Biol., 2021, 9, 719993. doi: 10.3389/fcell.2021.719993 PMID: 34900984
- Liu, W.; Luo, W.; Zhou, P.; Cheng, Y.; Qian, L. Bioinformatics analysis and functional verification of ADAMTS9-AS1/AS2 in lung adenocarcinoma. Front. Oncol., 2021, 11, 681777. doi: 10.3389/fonc.2021.681777 PMID: 34395250
- Li, Z.; Yue, G.; Zhang, T.; Wu, J.; Tian, X. LncRNA ADAMTS9-AS1 knockdown restricts cell proliferation and EMT in non-small cell lung cancer. Histol. Histopathol., 2021, 36(10), 1063-1072. doi: 10.14670/hh-18-347 PMID: 34085704
- Wang, P.; Zhang, Y.; Lv, X.; Zhou, J.; Cang, S.; Song, Y. LncRNA ADAMTS9-AS1 inhibits the stemness of lung adenocarcinoma cells by regulating miR-5009-3p/NPNT axis. Genomics, 2023, 115(3), 110596. doi: 10.1016/j.ygeno.2023.110596 PMID: 36870548
- Zhang, Z.; Li, H.; Hu, Y.; Wang, F. Long non-coding RNA ADAMTS9-AS1 exacerbates cell proliferation, migration, and invasion via triggering of the PI3K/AKT/mTOR pathway in hepatocellular carcinoma cells. Am. J. Transl. Res., 2020, 12(9), 5696-5707. PMID: 33042449
- Li, N.; Li, J.; Mi, Q.; Xie, Y.; Li, P.; Wang, L.; Binang, H.; Wang, Q.; Wang, Y.; Chen, Y.; Wang, Y.; Mao, H.; Du, L.; Wang, C. Long non‐coding RNA ADAMTS9‐AS1 suppresses colorectal cancer by inhibiting the Wnt/β‐catenin signalling pathway and is a potential diagnostic biomarker. J. Cell. Mol. Med., 2020, 24(19), 11318-11329. doi: 10.1111/jcmm.15713 PMID: 32889785
- Chen, W.; Tu, Q.; Yu, L.; Xu, Y.; Yu, G.; Jia, B.; Cheng, Y.; Wang, Y. LncRNA ADAMTS9-AS1, as prognostic marker, promotes cell proliferation and EMT in colorectal cancer. Hum. Cell, 2020, 33(4), 1133-1141. doi: 10.1007/s13577-020-00388-w PMID: 32918700
- Wan, J.; Jiang, S.; Jiang, Y.; Ma, W.; Wang, X.; He, Z.; Wang, X.; Cui, R. Data mining and expression analysis of differential lncRNA ADAMTS9-AS1 in prostate cancer. Front. Genet., 2020, 10, 1377. doi: 10.3389/fgene.2019.01377 PMID: 32153626
- Taheri, M.; Badrlou, E.; Hussen, B.M.; Kashi, A.H.; Ghafouri-Fard, S.; Baniahmad, A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front. Oncol., 2023, 13, 1123101. doi: 10.3389/fonc.2023.1123101 PMID: 37025585
- Zhou, Z.; Wu, X.; Zhou, Y.; Yan, W. Long non‐coding RNA ADAMTS9‐AS1 inhibits the progression of prostate cancer by modulating the miR‐142‐5p/CCND1 axis. J. Gene Med., 2021, 23(5), e3331. doi: 10.1002/jgm.3331 PMID: 33704879
- Fang, S.; Zhao, Y.; Hu, X. LncRNA ADAMTS9-AS1 restrains the aggressive traits of breast carcinoma cells via sponging miR-513a-5p. Cancer Manag. Res., 2020, 12, 10693-10703. doi: 10.2147/CMAR.S266575 PMID: 33149676
- Cai, L.; Hu, X.; Ye, L.; Bai, P.; Jie, Y.; Shu, K. Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer. Bioengineered, 2022, 13(4), 8226-8239. doi: 10.1080/21655979.2022.2049470 PMID: 35311457
- Osmani, L.; Askin, F.; Gabrielson, E.; Li, Q.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin. Cancer Biol., 2018, 52(Pt 1), 103-109. doi: 10.1016/j.semcancer.2017.11.019 PMID: 29183778
- Imyanitov, E.N.; Iyevleva, A.G.; Levchenko, E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103194. doi: 10.1016/j.critrevonc.2020.103194 PMID: 33316418
- Friedlaender, A.; Addeo, A.; Russo, A.; Gregorc, V.; Cortinovis, D.; Rolfo, C. Targeted therapies in early stage NSCLC: Hype or hope? Int. J. Mol. Sci., 2020, 21(17), 6329. doi: 10.3390/ijms21176329 PMID: 32878298
- Fu, K.; Xie, F.; Wang, F.; Fu, L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J. Hematol. Oncol., 2022, 15(1), 173. doi: 10.1186/s13045-022-01391-4 PMID: 36482474
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
- Bhanvadia, S.K. Bladder cancer survivorship. Curr. Urol. Rep., 2018, 19(12), 111. doi: 10.1007/s11934-018-0860-6 PMID: 30414013
- Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M. Bladder cancer. JAMA, 2020, 324(19), 1980-1991. doi: 10.1001/jama.2020.17598 PMID: 33201207
- Dyrskjøt, L.; Hansel, D.E.; Efstathiou, J.A.; Knowles, M.A.; Galsky, M.D.; Teoh, J.; Theodorescu, D. Bladder cancer. Nat. Rev. Dis. Primers, 2023, 9(1), 58. doi: 10.1038/s41572-023-00468-9 PMID: 37884563
- Siracusano, S.; Rizzetto, R.; Porcaro, A.B. Bladder cancer genomics. Urologia, 2020, 87(2), 49-56. doi: 10.1177/0391560319899011 PMID: 31942831
- Dobruch, J.; Oszczudłowski, M. Bladder cancer: Current challenges and future directions. Medicina (Kaunas), 2021, 57(8), 749. doi: 10.3390/medicina57080749 PMID: 34440955
- Ding, Q.; Chen, D.; Wang, W.; Chen, Y. Progress in research on the cribriform component in lung adenocarcinoma. Zhongguo Fei Ai Za Zhi, 2020, 23(7), 621-625. doi: 10.3779/j.issn.1009-3419.2020.101.19 PMID: 32450628
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health, 2019, 85(1), 8. doi: 10.5334/aogh.2419 PMID: 30741509
- Zhang, Q.; Wei, T.; Yan, L.; Zhu, S.; Jin, W.; Bai, Y.; Zeng, Y.; Zhang, X.; Yin, Z.; Yang, J.; Zhang, W.; Wu, M.; Zhang, Y.; Liu, L. Hypoxia-responsive lncRNA AC115619 encodes a micropeptide that suppresses m6A modifications and hepatocellular carcinoma progression. Cancer Res., 2023, 83(15), 2496-2512. doi: 10.1158/0008-5472.CAN-23-0337 PMID: 37326474
- Hutchinson, B.D.; Shroff, G.S.; Truong, M.T.; Ko, J.P. Spectrum of lung adenocarcinoma. Semin. Ultrasound CT MR, 2019, 40(3), 255-264. doi: 10.1053/j.sult.2018.11.009 PMID: 31200873
- Succony, L.; Rassl, D.M.; Barker, A.P.; McCaughan, F.M.; Rintoul, R.C. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat. Rev., 2021, 99, 102237. doi: 10.1016/j.ctrv.2021.102237 PMID: 34182217
- Inamura, K. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: Tumor initiation and progression. Int. J. Mol. Sci., 2018, 19(4), 1259. doi: 10.3390/ijms19041259 PMID: 29690599
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2022, 19(3), 151-172. doi: 10.1038/s41571-021-00573-2 PMID: 34764464
- Dhanasekaran, R.; Nault, J.C.; Roberts, L.R.; Zucman-Rossi, J. Genomic medicine and implications for hepatocellular carcinoma prevention and therapy. Gastroenterology, 2019, 156(2), 492-509. doi: 10.1053/j.gastro.2018.11.001 PMID: 30404026
- Fei, M.; Guan, J.; Xue, T.; Qin, L.; Tang, C.; Cui, G.; Wang, Y.; Gong, H.; Feng, W. Hypoxia promotes the migration and invasion of human hepatocarcinoma cells through the HIF-1α–IL-8–Akt axis. Cell. Mol. Biol. Lett., 2018, 23(1), 46. doi: 10.1186/s11658-018-0100-6 PMID: 30258464
- Lou, W.; Chen, J.; Ding, B.; Chen, D.; Zheng, H.; Jiang, D.; Xu, L.; Bao, C.; Cao, G.; Fan, W. Identification of invasion-metastasis-associated microRNAs in hepatocellular carcinoma based on bioinformatic analysis and experimental validation. J. Transl. Med., 2018, 16(1), 266. doi: 10.1186/s12967-018-1639-8 PMID: 30268144
- Wang, Y.; Deng, B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev., 2023, 42(3), 629-652. doi: 10.1007/s10555-023-10084-4 PMID: 36729264
- Wang, L.M.; Englander, Z.K.; Miller, M.L.; Bruce, J.N. Malignant Glioma. Adv. Exp. Med. Biol., 2023, 1405, 1-30. doi: 10.1007/978-3-031-23705-8_1 PMID: 37452933
- Yasinjan, F.; Xing, Y.; Geng, H.; Guo, R.; Yang, L.; Liu, Z.; Wang, H. Immunotherapy: A promising approach for glioma treatment. Front. Immunol., 2023, 14, 1255611. doi: 10.3389/fimmu.2023.1255611 PMID: 37744349
- Gusyatiner, O.; Hegi, M.E. Glioma epigenetics: From subclassification to novel treatment options. Semin. Cancer Biol., 2018, 51, 50-58. doi: 10.1016/j.semcancer.2017.11.010 PMID: 29170066
- Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA, 2013, 310(17), 1842-1850. doi: 10.1001/jama.2013.280319 PMID: 24193082
- Campos, B.; Olsen, L.R.; Urup, T.; Poulsen, H.S. A comprehensive profile of recurrent glioblastoma. Oncogene, 2016, 35(45), 5819-5825. doi: 10.1038/onc.2016.85 PMID: 27041580
- Klimeck, L.; Heisser, T.; Hoffmeister, M.; Brenner, H. Colorectal cancer: A health and economic problem. Best Pract. Res. Clin. Gastroenterol., 2023, 66, 101839. doi: 10.1016/j.bpg.2023.101839 PMID: 37852707
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480. doi: 10.1016/S0140-6736(19)32319-0 PMID: 31631858
- Thanikachalam, K.; Khan, G. Colorectal cancer and nutrition. Nutrients, 2019, 11(1), 164. doi: 10.3390/nu11010164 PMID: 30646512
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal cancer epidemiology: Recent trends and impact on outcomes. Curr. Drug Targets, 2021, 22(9), 998-1009. doi: 10.2174/18735592MTEx9NTk2y PMID: 33208072
- Haraldsdottir, S.; Einarsdottir, H.M.; Smaradottir, A.; Gunnlaugsson, A.; Halfdanarson, T.R. Colorectal cancer - review. Laeknabladid, 2014, 100(2), 75-82. doi: 10.17992/lbl.2014.02.531 PMID: 24639430
- Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and prevention of prostate cancer. Eur. Urol. Oncol., 2021, 4(6), 877-892. doi: 10.1016/j.euo.2021.09.006 PMID: 34716119
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730. doi: 10.3390/molecules27175730 PMID: 36080493
- Nguyen-Nielsen, M.; Borre, M. Diagnostic and therapeutic strategies for prostate cancer. Semin. Nucl. Med., 2016, 46(6), 484-490. doi: 10.1053/j.semnuclmed.2016.07.002 PMID: 27825428
- Wang, Y.A.; Sfakianos, J.; Tewari, A.K.; Cordon-cardo, C.; Kyprianou, N. Molecular tracing of prostate cancer lethality. Oncogene, 2020, 39(50), 7225-7238. doi: 10.1038/s41388-020-01496-5 PMID: 33046797
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33. doi: 10.1186/s40659-017-0140-9 PMID: 28969709
- Kolak, A.; Kamińska, M.; Sygit, K.; Budny, A.; Surdyka, D.; Kukiełka-Budny, B.; Burdan, F. Primary and secondary prevention of breast cancer. Ann. Agric. Environ. Med., 2017, 24(4), 549-553. doi: 10.26444/aaem/75943 PMID: 29284222
- Winters, S.; Martin, C.; Murphy, D.; Shokar, N.K. Breast cancer epidemiology, prevention, and screening. Prog. Mol. Biol. Transl. Sci., 2017, 151, 1-32. doi: 10.1016/bs.pmbts.2017.07.002 PMID: 29096890
- Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin., 2019, 69(4), 280-304. doi: 10.3322/caac.21559 PMID: 31099893
- Sambasivan, S. Epithelial ovarian cancer: Review article. Cancer Treat. Res. Commun., 2022, 33, 100629. doi: 10.1016/j.ctarc.2022.100629 PMID: 36127285
- Arnaoutoglou, C.; Dampala, K.; Anthoulakis, C.; Papanikolaou, E.G.; Tentas, I.; Dragoutsos, G.; Machairiotis, N.; Zarogoulidis, P.; Ioannidis, A.; Matthaios, D.; Perdikouri, E.I.; Giannakidis, D.; Sardeli, C.; Petousis, S.; Oikonomou, P.; Nikolaou, C.; Charalampidis, C.; Sapalidis, K. Epithelial ovarian cancer: A five year review. Medicina (Kaunas), 2023, 59(7), 1183. doi: 10.3390/medicina59071183 PMID: 37511995
- Shah, S.; Cheung, A.; Kutka, M.; Sheriff, M.; Boussios, S. Epithelial ovarian cancer: Providing evidence of predisposition genes. Int. J. Environ. Res. Public Health, 2022, 19(13), 8113. doi: 10.3390/ijerph19138113 PMID: 35805770
- Richardson, D.L.; Eskander, R.N.; O’Malley, D.M. Advances in ovarian cancer care and unmet treatment needs for patients with platinum resistance. JAMA Oncol., 2023, 9(6), 851-859. doi: 10.1001/jamaoncol.2023.0197 PMID: 37079311
- Yan, H.; Bu, P.; Bu, P. Non-coding RNA in cancer. Essays Biochem., 2021, 65(4), 625-639. doi: 10.1042/EBC20200032 PMID: 33860799
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118. doi: 10.1038/s41580-020-00315-9 PMID: 33353982
- Toden, S.; Zumwalt, T.J.; Goel, A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(1), 188491. doi: 10.1016/j.bbcan.2020.188491 PMID: 33316377
- Ran, Z.; Wu, S.; Ma, Z.; Chen, X.; Liu, J.; Yang, J. Advances in exosome biomarkers for cervical cancer. Cancer Med., 2022, 11(24), 4966-4978. doi: 10.1002/cam4.4828 PMID: 35578572
- Krylova, S.V.; Feng, D. The machinery of exosomes: Biogenesis, release, and uptake. Int. J. Mol. Sci., 2023, 24(2), 1337. doi: 10.3390/ijms24021337 PMID: 36674857
- Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther., 2020, 5(1), 145. doi: 10.1038/s41392-020-00261-0 PMID: 32759948
- Xu, Z.; Chen, Y.; Ma, L.; Chen, Y.; Liu, J.; Guo, Y.; Yu, T.; Zhang, L.; Zhu, L.; Shu, Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol. Ther., 2022, 30(10), 3133-3154. doi: 10.1016/j.ymthe.2022.01.046 PMID: 35405312
- Huang, W.; Li, H.; Yu, Q.; Xiao, W.; Wang, D.O. LncRNA-mediated DNA methylation: An emerging mechanism in cancer and beyond. J. Exp. Clin. Cancer Res., 2022, 41(1), 100. doi: 10.1186/s13046-022-02319-z PMID: 35292092
- Liu, Y.; Shi, M.; He, X.; Cao, Y.; Liu, P.; Li, F.; Zou, S.; Wen, C.; Zhan, Q.; Xu, Z.; Wang, J.; Sun, B.; Shen, B. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J. Hematol. Oncol., 2022, 15(1), 52. doi: 10.1186/s13045-022-01272-w PMID: 35526050
Supplementary files
