Pioneering the Battle Against Breast Cancer: The Promise of New Bcl-2 Family
- Авторлар: Boroujeni A.1, Ates-Alagoz Z.1
-
Мекемелер:
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University
- Шығарылым: Том 25, № 3 (2025)
- Беттер: 164-178
- Бөлім: Oncology
- URL: https://genescells.com/1871-5206/article/view/694481
- DOI: https://doi.org/10.2174/0118715206320224240910054728
- ID: 694481
Дәйексөз келтіру
Толық мәтін
Аннотация
Currently, breast cancer is the most common cancer type, accounting for 1 in every 4 cancer cases. Leading both in mortality and incidence, breast cancer causes 1 in 4 cancer deaths. To decrease the burden of breast cancer, novel therapeutic agents which target the key hallmarks of cancer, are being explored. The Bcl-2 family of proteins has a crucial role in governing cell death, making them an attractive target for cancer therapy. As cancer chemotherapies lead to oncogenic stress, cancer cells upregulate the Bcl-2 family to overcome apoptosis, leading to failure of treatment. To fix this issue, Bcl-2 family inhibitors, which can cause cell death, have been introduced as novel therapeutic agents. Members of this group have shown promising results in in-vitro studies, and some are currently in clinical trials. In this review, we will investigate Bcl-2 family inhibitors, which are already in trials as monotherapy or combination therapy for breast cancer, and we will also highlight the result of in vitro studies of novel Bcl-2 family inhibitors on breast cancer cells. The findings of these studies have yielded encouraging outcomes regarding the identification of novel Bcl-2 family inhibitors. These compounds hold significant potential as efficacious agents for employment in both monotherapy and combination therapy settings.
Негізгі сөздер
Авторлар туралы
Ali Boroujeni
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University
Email: info@benthamscience.net
Zeynep Ates-Alagoz
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Heer, E.; Harper, A.; Escandor, N.; Sung, H.; McCormack, V.; Fidler-Benaoudia, M.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study. Lancet Glob. Health, 2020, 8(8), e1027-e1037. doi: 10.1016/S2214-109X(20)30215-1 PMID: 32710860
- Strasser, A.; Cory, S.; Adams, J.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J., 2011, 30(18), 3667-3683. doi: 10.1038/emboj.2011.307 PMID: 21863020
- Chonghaile, T.N.; Sarosiek, K.A.; Vo, T.T.; Ryan, J.A.; Tammareddi, A.; Moore, V.D.G.; Deng, J.; Anderson, K.C.; Richardson, P.; Tai, Y.T.; Mitsiades, C.S.; Matulonis, U.A.; Drapkin, R.; Stone, R.; DeAngelo, D.J.; McConkey, D.J.; Sallan, S.E.; Silverman, L.; Hirsch, M.S.; Carrasco, D.R.; Letai, A. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science, 2011, 334(6059), 1129-1133. doi: 10.1126/science.1206727 PMID: 22033517
- Dawson, S-J.; Makretsov, N.; Blows, F.M.; Driver, K.E.; Provenzano, E.; Le Quesne, J.; Baglietto, L.; Severi, G.; Giles, G.G.; McLean, C.A.; Callagy, G.; Green, A.R.; Ellis, I.; Gelmon, K.; Turashvili, G.; Leung, S.; Aparicio, S.; Huntsman, D.; Caldas, C.; Pharoah, P. Bcl-2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br. J. Cancer, 2010, 103(5), 668-675. doi: 10.1038/sj.bjc.6605736 PMID: 20664598
- Oakes, S.R.; Vaillant, F.; Lim, E.; Lee, L.; Breslin, K.; Feleppa, F.; Deb, S.; Ritchie, M.E.; Takano, E.; Ward, T.; Fox, S.B.; Generali, D.; Smyth, G.K.; Strasser, A.; Huang, D.C.S.; Visvader, J.E.; Lindeman, G.J. Sensitization of BCL-2–expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 2766-2771. doi: 10.1073/pnas.1104778108 PMID: 21768359
- Vaillant, F.; Merino, D.; Lee, L.; Breslin, K.; Pal, B.; Ritchie, M.E.; Smyth, G.K.; Christie, M.; Phillipson, L.J.; Burns, C.J.; Mann, G.B.; Visvader, J.E.; Lindeman, G.J. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell, 2013, 24(1), 120-129. doi: 10.1016/j.ccr.2013.06.002 PMID: 23845444
- Merino, D.; Lok, S.W.; Visvader, J.E.; Lindeman, G.J. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene, 2016, 35(15), 1877-1887. doi: 10.1038/onc.2015.287 PMID: 26257067
- Pommier, Y.; Sordet, O.; Antony, S.; Hayward, R.L.; Kohn, K.W. Apoptosis defects and chemotherapy resistance: Molecular interaction maps and networks. Oncogene, 2004, 23(16), 2934-2949. doi: 10.1038/sj.onc.1207515 PMID: 15077155
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417. doi: 10.1038/s41571-020-0341-y PMID: 32203277
- Zhang, C.; Wang, H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(5), 188798. doi: 10.1016/j.bbcan.2022.188798 PMID: 36096336
- Fowler-Shorten, D.J.; Hellmich, C.; Markham, M.; Bowles, K.M.; Rushworth, S.A. BCL-2 inhibition in haematological malignancies: Clinical application and complications. Blood Rev., 2024, 65, 101195. doi: 10.1016/j.blre.2024.101195 PMID: 38523032
- Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the Bcl-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63. doi: 10.1038/nrm3722 PMID: 24355989
- Roy, S.; Nicholson, D.W. Cross-talk in cell death signaling. J. Exp. Med., 2000, 192(8), F21-F26. doi: 10.1084/jem.192.8.F21 PMID: 11034612
- Wei, M.C.; Zong, W.X.; Cheng, E.H.Y.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A.J.; Roth, K.A.; MacGregor, G.R.; Thompson, C.B.; Korsmeyer, S.J. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science, 2001, 292(5517), 727-730. doi: 10.1126/science.1059108 PMID: 11326099
- Llambi, F.; Moldoveanu, T.; Tait, S.W.G.; Bouchier-Hayes, L.; Temirov, J.; McCormick, L.L.; Dillon, C.P.; Green, D.R. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell, 2011, 44(4), 517-531. doi: 10.1016/j.molcel.2011.10.001 PMID: 22036586
- Brunelle, J.K.; Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci., 2009, 122(4), 437-441. doi: 10.1242/jcs.031682 PMID: 19193868
- Letai, A.; Bassik, M.C.; Walensky, L.D.; Sorcinelli, M.D.; Weiler, S.; Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2002, 2(3), 183-192. doi: 10.1016/S1535-6108(02)00127-7 PMID: 12242151
- Sarosiek, K.A.; Chi, X.; Bachman, J.A.; Sims, J.J.; Montero, J.; Patel, L.; Flanagan, A.; Andrews, D.W.; Sorger, P.; Letai, A. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol. Cell, 2013, 51(6), 751-765. doi: 10.1016/j.molcel.2013.08.048 PMID: 24074954
- Akl, H.; Vervloessem, T.; Kiviluoto, S.; Bittremieux, M.; Parys, J.B.; De Smedt, H.; Bultynck, G. A dual role for the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus endoplasmic reticulum. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(10), 2240-2252. doi: 10.1016/j.bbamcr.2014.04.017 PMID: 24768714
- Chipuk, J.E.; Green, D.R. How do Bcl-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol., 2008, 18(4), 157-164. doi: 10.1016/j.tcb.2008.01.007 PMID: 18314333
- Tait, S.W.G.; Green, D.R. Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol., 2010, 11(9), 621-632. doi: 10.1038/nrm2952 PMID: 20683470
- Colell, A.; Ricci, J.E.; Tait, S.; Milasta, S.; Maurer, U.; Bouchier-Hayes, L.; Fitzgerald, P.; Guio-Carrion, A.; Waterhouse, N.J.; Li, C.W.; Mari, B.; Barbry, P.; Newmeyer, D.D.; Beere, H.M.; Green, D.R. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell, 2007, 129(5), 983-997. doi: 10.1016/j.cell.2007.03.045 PMID: 17540177
- Lartigue, L.; Kushnareva, Y.; Seong, Y.; Lin, H.; Faustin, B.; Newmeyer, D.D. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell, 2009, 20(23), 4871-4884. doi: 10.1091/mbc.e09-07-0649 PMID: 19793916
- Gross, A.; Katz, S.G. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ., 2017, 24(8), 1348-1358. doi: 10.1038/cdd.2017.22 PMID: 28234359
- Liu, T.; Wu, Z.; He, Y.; Xiao, Y.; Xia, C. Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy. Eur. J. Med. Chem., 2020, 201, 112446. doi: 10.1016/j.ejmech.2020.112446 PMID: 32563811
- Moulder, S.L.; Symmans, W.F.; Booser, D.J.; Madden, T.L.; Lipsanen, C.; Yuan, L.; Brewster, A.M.; Cristofanilli, M.; Hunt, K.K.; Buchholz, T.A.; Zwiebel, J.; Valero, V.; Hortobagyi, G.N.; Esteva, F.J. Phase I/II study of G3139 (Bcl-2 antisense oligonucleotide) in combination with doxorubicin and docetaxel in breast cancer. Clin. Cancer Res., 2008, 14(23), 7909-7916. doi: 10.1158/1078-0432.CCR-08-1104 PMID: 19047121
- Rom, J.; von Minckwitz, G.; Marmé, F.; Ataseven, B.; Kozian, D.; Sievert, M.; Schlehe, B.; Schuetz, F.; Scharf, A.; Kaufmann, M.; Sohn, C.; Schneeweiss, A. Phase I study of apoptosis gene modulation with oblimersen within preoperative chemotherapy in patients with primary breast cancer. Ann. Oncol., 2009, 20(11), 1829-1835. doi: 10.1093/annonc/mdp208 PMID: 19605509
- Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129. doi: 10.1073/pnas.97.13.7124 PMID: 10860979
- An, J.; Chen, Y.; Huang, Z. Critical upstream signals of cytochrome C release induced by a novel Bcl-2 inhibitor. J. Biol. Chem., 2004, 279(18), 19133-19140. doi: 10.1074/jbc.M400295200 PMID: 14966123
- Oliver, C.L.; Miranda, M.B.; Shangary, S.; Land, S.; Wang, S.; Johnson, D.E. (−)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-XL-mediated apoptosis resistance. Mol. Cancer Ther., 2005, 4(1), 23-31. doi: 10.1158/1535-7163.23.4.1 PMID: 15657350
- Baggstrom, M.Q.; Qi, Y.; Koczywas, M.; Argiris, A.; Johnson, E.A.; Millward, M.J.; Murphy, S.C.; Erlichman, C.; Rudin, C.M.; Govindan, R. A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J. Thorac. Oncol., 2011, 6(10), 1757-1760. doi: 10.1097/JTO.0b013e31822e2941 PMID: 21918390
- Schenk, R.L.; Strasser, A.; Dewson, G. BCL-2: Long and winding path from discovery to therapeutic target. Biochem. Biophys. Res. Commun., 2017, 482(3), 459-469. doi: 10.1016/j.bbrc.2016.10.100 PMID: 28212732
- Konopleva, M.; Watt, J.; Contractor, R.; Tsao, T.; Harris, D.; Estrov, Z.; Bornmann, W.; Kantarjian, H.; Viallet, J.; Samudio, I.; Andreeff, M. Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res., 2008, 68(9), 3413-3420. doi: 10.1158/0008-5472.CAN-07-1919 PMID: 18451169
- Nguyen, M.; Marcellus, R.C.; Roulston, A.; Watson, M.; Serfass, L.; Murthy Madiraju, S.R.; Goulet, D.; Viallet, J.; Bélec, L.; Billot, X.; Acoca, S.; Purisima, E.; Wiegmans, A.; Cluse, L.; Johnstone, R.W.; Beauparlant, P.; Shore, G.C. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19512-19517. doi: 10.1073/pnas.0709443104 PMID: 18040043
- Wilson, W.H.; O’Connor, O.A.; Czuczman, M.S.; LaCasce, A.S.; Gerecitano, J.F.; Leonard, J.P.; Tulpule, A.; Dunleavy, K.; Xiong, H.; Chiu, Y.L.; Cui, Y.; Busman, T.; Elmore, S.W.; Rosenberg, S.H.; Krivoshik, A.P.; Enschede, S.H.; Humerickhouse, R.A. Navitoclax, a targeted high-affinity inhibitor of Bcl-2, in lymphoid malignancies: A phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol., 2010, 11(12), 1149-1159. doi: 10.1016/S1470-2045(10)70261-8 PMID: 21094089
- Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O’Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681. doi: 10.1038/nature03579 PMID: 15902208
- van Delft, M.F.; Wei, A.H.; Mason, K.D.; Vandenberg, C.J.; Chen, L.; Czabotar, P.E.; Willis, S.N.; Scott, C.L.; Day, C.L.; Cory, S.; Adams, J.M.; Roberts, A.W.; Huang, D.C.S. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell, 2006, 10(5), 389-399. doi: 10.1016/j.ccr.2006.08.027 PMID: 17097561
- Tse, C.; Shoemaker, A.R.; Adickes, J.; Anderson, M.G.; Chen, J.; Jin, S.; Johnson, E.F.; Marsh, K.C.; Mitten, M.J.; Nimmer, P.; Roberts, L.; Tahir, S.K.; Xiao, Y.; Yang, X.; Zhang, H.; Fesik, S.; Rosenberg, S.H.; Elmore, S.W. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res., 2008, 68(9), 3421-3428. doi: 10.1158/0008-5472.CAN-07-5836 PMID: 18451170
- Roberts, A.W.; Seymour, J.F.; Brown, J.R.; Wierda, W.G.; Kipps, T.J.; Khaw, S.L.; Carney, D.A.; He, S.Z.; Huang, D.C.S.; Xiong, H.; Cui, Y.; Busman, T.A.; McKeegan, E.M.; Krivoshik, A.P.; Enschede, S.H.; Humerickhouse, R. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol., 2012, 30(5), 488-496. doi: 10.1200/JCO.2011.34.7898 PMID: 22184378
- Zhang, L.; Lu, Z.; Zhao, X. Targeting Bcl-2 for cancer therapy. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188569. doi: 10.1016/j.bbcan.2021.188569 PMID: 34015412
- Roberts, A.W.; Advani, R.H.; Kahl, B.S.; Persky, D.; Sweetenham, J.W.; Carney, D.A.; Yang, J.; Busman, T.B.; Enschede, S.H.; Humerickhouse, R.A.; Seymour, J.F. Phase 1 study of the safety, pharmacokinetics, and antitumour activity of the BCL2 inhibitor navitoclax in combination with rituximab in patients with relapsed or refractory CD20+ lymphoid malignancies. Br. J. Haematol., 2015, 170(5), 669-678. doi: 10.1111/bjh.13487 PMID: 25942994
- Kipps, T.J.; Eradat, H.; Grosicki, S.; Catalano, J.; Cosolo, W.; Dyagil, I.S.; Yalamanchili, S.; Chai, A.; Sahasranaman, S.; Punnoose, E.; Hurst, D.; Pylypenko, H. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk. Lymphoma, 2015, 56(10), 2826-2833. doi: 10.3109/10428194.2015.1030638 PMID: 25797560
- Schoenwaelder, S.M.; Jarman, K.E.; Gardiner, E.E.; Hua, M.; Qiao, J.; White, M.J.; Josefsson, E.C.; Alwis, I.; Ono, A.; Willcox, A.; Andrews, R.K.; Mason, K.D.; Salem, H.H.; Huang, D.C.S.; Kile, B.T.; Roberts, A.W.; Jackson, S.P. Bcl-xL–inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood, 2011, 118(6), 1663-1674. doi: 10.1182/blood-2011-04-347849 PMID: 21673344
- Kile, B.T. The role of apoptosis in megakaryocytes and platelets. Br. J. Haematol., 2014, 165(2), 217-226. doi: 10.1111/bjh.12757 PMID: 24467740
- Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.S.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C.M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208. doi: 10.1038/nm.3048 PMID: 23291630
- Yang, S.; Mao, Y.; Zhang, H.; Xu, Y.; An, J.; Huang, Z. The chemical biology of apoptosis: Revisited after 17 years. Eur. J. Med. Chem., 2019, 177, 63-75. doi: 10.1016/j.ejmech.2019.05.019 PMID: 31129454
- Pan, R.; Hogdal, L.J.; Benito, J.M.; Bucci, D.; Han, L.; Borthakur, G.; Cortes, J.; DeAngelo, D.J.; Debose, L.; Mu, H.; Döhner, H.; Gaidzik, V.I.; Galinsky, I.; Golfman, L.S.; Haferlach, T.; Harutyunyan, K.G.; Hu, J.; Leverson, J.D.; Marcucci, G.; Müschen, M.; Newman, R.; Park, E.; Ruvolo, P.P.; Ruvolo, V.; Ryan, J.; Schindela, S.; Zweidler-McKay, P.; Stone, R.M.; Kantarjian, H.; Andreeff, M.; Konopleva, M.; Letai, A.G. Selective Bcl-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov., 2014, 4(3), 362-375. doi: 10.1158/2159-8290.CD-13-0609 PMID: 24346116
- Touzeau, C.; Dousset, C.; Le Gouill, S.; Sampath, D.; Leverson, J.D.; Souers, A.J.; Maïga, S.; Béné, M.C.; Moreau, P.; Pellat-Deceunynck, C.; Amiot, M. The Bcl-2 specific BH3 mimetic ABT-199: A promising targeted therapy for t(11;14) multiple myeloma. Leukemia, 2014, 28(1), 210-212. doi: 10.1038/leu.2013.216 PMID: 23860449
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; Wong, S.; Dunbar, M.; Zhu, M.; Desai, M.B.; Cerri, E.; Heitner Enschede, S.; Humerickhouse, R.A.; Wierda, W.G.; Seymour, J.F. Targeting Bcl-2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med., 2016, 374(4), 311-322. doi: 10.1056/NEJMoa1513257 PMID: 26639348
- Stilgenbauer, S.; Eichhorst, B.; Schetelig, J.; Coutre, S.; Seymour, J.F.; Munir, T.; Puvvada, S.D.; Wendtner, C.M.; Roberts, A.W.; Jurczak, W.; Mulligan, S.P.; Böttcher, S.; Mobasher, M.; Zhu, M.; Desai, M.; Chyla, B.; Verdugo, M.; Enschede, S.H.; Cerri, E.; Humerickhouse, R.; Gordon, G.; Hallek, M.; Wierda, W.G. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: A multicentre, open-label, phase 2 study. Lancet Oncol., 2016, 17(6), 768-778. doi: 10.1016/S1470-2045(16)30019-5 PMID: 27178240
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; De la Serna, J.; Jaeger, U.; Cartron, G.; Montillo, M.; Humerickhouse, R.; Punnoose, E.A.; Li, Y.; Boyer, M.; Humphrey, K.; Mobasher, M.; Kater, A.P. Venetoclax–rituximab in relapsed or refractory chronic lymphocytic leukemia. N. Engl. J. Med., 2018, 378(12), 1107-1120. doi: 10.1056/NEJMoa1713976 PMID: 29562156
- Lok, S.W.; Whittle, J.R.; Vaillant, F.; Teh, C.E.; Lo, L.L.; Policheni, A.N.; Bergin, A.R.T.; Desai, J.; Ftouni, S.; Gandolfo, L.C.; Liew, D.; Liu, H.K.; Mann, G.B.; Moodie, K.; Murugasu, A.; Pal, B.; Roberts, A.W.; Rosenthal, M.A.; Shackleton, K.; Silva, M.J.; Siow, Z.R.; Smyth, G.K.; Taylor, L.; Travers, A.; Yeo, B.; Yeung, M.M.; Bujak, A.Z.; Dawson, S.J.; Gray, D.H.D.; Visvader, J.E.; Lindeman, G.J. A phase Ib dose-escalation and expansion study of the Bcl-2 inhibitor venetoclax combined with tamoxifen in er and BCL2–positive metastatic breast cancer. Cancer Discov., 2019, 9(3), 354-369. doi: 10.1158/2159-8290.CD-18-1151 PMID: 30518523
- Vogler, M. Targeting Bcl-2-proteins for the treatment of solid tumours. Adv. Med., 2014, 2014, 1-14. doi: 10.1155/2014/943648 PMID: 26556430
- Levesley, J.; Steele, L.; Brüning-Richardson, A.; Davison, A.; Zhou, J.; Ding, C.; Lawler, S.; Short, S.C. Selective BCL-XL inhibition promotes apoptosis in combination with MLN8237 in medulloblastoma and pediatric glioblastoma cells. Neuro-oncol., 2018, 20(2), 203-214. doi: 10.1093/neuonc/nox134 PMID: 29016820
- Lessene, G.; Czabotar, P.E.; Sleebs, B.E.; Zobel, K.; Lowes, K.N.; Adams, J.M.; Baell, J.B.; Colman, P.M.; Deshayes, K.; Fairbrother, W.J.; Flygare, J.A.; Gibbons, P.; Kersten, W.J.A.; Kulasegaram, S.; Moss, R.M.; Parisot, J.P.; Smith, B.J.; Street, I.P.; Yang, H.; Huang, D.C.S.; Watson, K.G. Structure-guided design of a selective BCL-XL inhibitor. Nat. Chem. Biol., 2013, 9(6), 390-397. doi: 10.1038/nchembio.1246 PMID: 23603658
- Abed, M.N.; Abdullah, M.I.; Richardson, A. Antagonism of Bcl-XL is necessary for synergy between carboplatin and BH3 mimetics in ovarian cancer cells. J. Ovarian Res., 2016, 9(1), 25. doi: 10.1186/s13048-016-0234-y PMID: 27080533
- Lucantoni, F.; Lindner, A.U.; O’Donovan, N.; Düssmann, H.; Prehn, J.H.M. Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis., 2018, 9(2), 42. doi: 10.1038/s41419-017-0039-y PMID: 29352235
- Tao, Z.F.; Hasvold, L.; Wang, L.; Wang, X.; Petros, A.M.; Park, C.H.; Boghaert, E.R.; Catron, N.D.; Chen, J.; Colman, P.M. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med. Chem. Lett., 2014, 5(10), 1088-1093. doi: 10.1021/ml5001867
- Wang, L.; Doherty, G.A.; Judd, A.S.; Tao, Z.F.; Hansen, T.M.; Frey, R.R.; Song, X.; Bruncko, M.; Kunzer, A.R.; Wang, X.; Wendt, M.D.; Flygare, J.A.; Catron, N.D.; Judge, R.A.; Park, C.H.; Shekhar, S.; Phillips, D.C.; Nimmer, P.; Smith, M.L.; Tahir, S.K.; Xiao, Y.; Xue, J.; Zhang, H.; Le, P.N.; Mitten, M.J.; Boghaert, E.R.; Gao, W.; Kovar, P.; Choo, E.F.; Diaz, D.; Fairbrother, W.J.; Elmore, S.W.; Sampath, D.; Leverson, J.D.; Souers, A.J. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-X L Inhibitor. ACS Med. Chem. Lett., 2020, 11(10), 1829-1836. doi: 10.1021/acsmedchemlett.9b00568 PMID: 33062160
- Leverson, J.D.; Phillips, D.C.; Mitten, M.J.; Boghaert, E.R.; Diaz, D.; Tahir, S.K.; Belmont, L.D.; Nimmer, P.; Xiao, Y.; Ma, X.M.; Lowes, K.N.; Kovar, P.; Chen, J.; Jin, S.; Smith, M.; Xue, J.; Zhang, H.; Oleksijew, A.; Magoc, T.J.; Vaidya, K.S.; Albert, D.H.; Tarrant, J.M.; La, N.; Wang, L.; Tao, Z.F.; Wendt, M.D.; Sampath, D.; Rosenberg, S.H.; Tse, C.; Huang, D.C.; Fairbrother, W.J.; Elmore, S.W.; Souers, A.J. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl. Med., 2015, 7(279), 279ra40. doi: 10.1126/scitranslmed.aaa4642 PMID: 25787766
- FDA authorisation of first-in-human clinical trial with AstraZeneca’s DEP® product AZD0466. 2024. Available from: https://starpharma.com/news/view/view/436/fda-authorisation-of-first-in-human-clinical-trial-with-astrazenecaas-dep-product-azd0466
- Ploumaki, I.; Triantafyllou, E.; Koumprentziotis, I.A.; Karampinos, K.; Drougkas, K.; Karavolias, I.; Trontzas, I.; Kotteas, E.A. Bcl-2 pathway inhibition in solid tumors: A review of clinical trials. Clin. Transl. Oncol., 2023, 25(6), 1554-1578. doi: 10.1007/s12094-022-03070-9 PMID: 36639602
- Kehr, S.; Vogler, M. It’s time to die: BH3 mimetics in solid tumors. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(5), 118987. doi: 10.1016/j.bbamcr.2021.118987 PMID: 33600840
- Kotschy, A.; Szlavik, Z.; Murray, J.; Davidson, J.; Maragno, A.L.; Le Toumelin-Braizat, G.; Chanrion, M.; Kelly, G.L.; Gong, J.N.; Moujalled, D.M.; Bruno, A.; Csekei, M.; Paczal, A.; Szabo, Z.B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Ondi, L.; Blasko, G.; Robertson, A.; Surgenor, A.; Dokurno, P.; Chen, I.; Matassova, N.; Smith, J.; Pedder, C.; Graham, C.; Studeny, A.; Lysiak-Auvity, G.; Girard, A.M.; Gravé, F.; Segal, D.; Riffkin, C.D.; Pomilio, G.; Galbraith, L.C.A.; Aubrey, B.J.; Brennan, M.S.; Herold, M.J.; Chang, C.; Guasconi, G.; Cauquil, N.; Melchiore, F.; Guigal-Stephan, N.; Lockhart, B.; Colland, F.; Hickman, J.A.; Roberts, A.W.; Huang, D.C.S.; Wei, A.H.; Strasser, A.; Lessene, G.; Geneste, O. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature, 2016, 538(7626), 477-482. doi: 10.1038/nature19830 PMID: 27760111
- Leverson, J.D.; Zhang, H.; Chen, J.; Tahir, S.K.; Phillips, D.C.; Xue, J.; Nimmer, P.; Jin, S.; Smith, M.; Xiao, Y.; Kovar, P.; Tanaka, A.; Bruncko, M.; Sheppard, G.S.; Wang, L.; Gierke, S.; Kategaya, L.; Anderson, D.J.; Wong, C.; Eastham-Anderson, J.; Ludlam, M.J.C.; Sampath, D.; Fairbrother, W.J.; Wertz, I.; Rosenberg, S.H.; Tse, C.; Elmore, S.W.; Souers, A.J. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis., 2015, 6(1), e1590-e1590. doi: 10.1038/cddis.2014.561 PMID: 25590800
- Merino, D.; Whittle, J.R.; Vaillant, F.; Serrano, A.; Gong, J.N.; Giner, G.; Maragno, A.L.; Chanrion, M.; Schneider, E.; Pal, B.; Li, X.; Dewson, G.; Gräsel, J.; Liu, K.; Lalaoui, N.; Segal, D.; Herold, M.J.; Huang, D.C.S.; Smyth, G.K.; Geneste, O.; Lessene, G.; Visvader, J.E.; Lindeman, G.J. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci. Transl. Med., 2017, 9(401), eaam7049. doi: 10.1126/scitranslmed.aam7049 PMID: 28768804
- Szlávik, Z.; Ondi, L.; Csékei, M.; Paczal, A.; Szabó, Z.B.; Radics, G.; Murray, J.; Davidson, J.; Chen, I.; Davis, B.; Hubbard, R.E.; Pedder, C.; Dokurno, P.; Surgenor, A.; Smith, J.; Robertson, A.; LeToumelin-Braizat, G.; Cauquil, N.; Zarka, M.; Demarles, D.; Perron-Sierra, F.; Claperon, A.; Colland, F.; Geneste, O.; Kotschy, A. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity. J. Med. Chem., 2019, 62(15), 6913-6924. doi: 10.1021/acs.jmedchem.9b00134 PMID: 31339316
- Fletcher, S. MCL-1 inhibitors - Where are we now (2019)? Expert Opin. Ther. Pat., 2019, 29(11), 909-919. doi: 10.1080/13543776.2019.1672661
- Szlavik, Z.; Csekei, M.; Paczal, A.; Szabo, Z.B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Murray, J.; Davidson, J.; Chen, I.; Dokurno, P.; Surgenor, A.E.; Daniels, Z.M.; Hubbard, R.E.; Le Toumelin-Braizat, G.; Claperon, A.; Lysiak-Auvity, G.; Girard, A.M.; Bruno, A.; Chanrion, M.; Colland, F.; Maragno, A.L.; Demarles, D.; Geneste, O.; Kotschy, A. Discovery of S64315, a potent and selective Mcl-1 inhibitor. J. Med. Chem., 2020, 63(22), 13762-13795. doi: 10.1021/acs.jmedchem.0c01234 PMID: 33146521
- Tron, A.E.; Belmonte, M.A.; Adam, A.; Aquila, B.M.; Boise, L.H.; Chiarparin, E.; Cidado, J.; Embrey, K.J.; Gangl, E.; Gibbons, F.D.; Gregory, G.P.; Hargreaves, D.; Hendricks, J.A.; Johannes, J.W.; Johnstone, R.W.; Kazmirski, S.L.; Kettle, J.G.; Lamb, M.L.; Matulis, S.M.; Nooka, A.K.; Packer, M.J.; Peng, B.; Rawlins, P.B.; Robbins, D.W.; Schuller, A.G.; Su, N.; Yang, W.; Ye, Q.; Zheng, X.; Secrist, J.P.; Clark, E.A.; Wilson, D.M.; Fawell, S.E.; Hird, A.W. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun., 2018, 9(1), 5341. doi: 10.1038/s41467-018-07551-w PMID: 30559424
- Caenepeel, S.; Brown, S.P.; Belmontes, B.; Moody, G.; Keegan, K.S.; Chui, D.; Whittington, D.A.; Huang, X.; Poppe, L.; Cheng, A.C.; Cardozo, M.; Houze, J.; Li, Y.; Lucas, B.; Paras, N.A.; Wang, X.; Taygerly, J.P.; Vimolratana, M.; Zancanella, M.; Zhu, L.; Cajulis, E.; Osgood, T.; Sun, J.; Damon, L.; Egan, R.K.; Greninger, P.; McClanaghan, J.D.; Gong, J.; Moujalled, D.; Pomilio, G.; Beltran, P.; Benes, C.H.; Roberts, A.W.; Huang, D.C.; Wei, A.; Canon, J.; Coxon, A.; Hughes, P.E. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov., 2018, 8(12), 1582-1597. doi: 10.1158/2159-8290.CD-18-0387 PMID: 30254093
- Soderquist, R.S.; Crawford, L.; Liu, E.; Lu, M.; Agarwal, A.; Anderson, G.R.; Lin, K.H.; Winter, P.S.; Cakir, M.; Wood, K.C. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat. Commun., 2018, 9(1), 3513. doi: 10.1038/s41467-018-05815-z PMID: 30158527
- Seiller, C.; Maiga, S.; Touzeau, C.; Bellanger, C.; Kervoëlen, C.; Descamps, G.; Maillet, L.; Moreau, P.; Pellat-Deceunynck, C.; Gomez-Bougie, P.; Amiot, M. Dual targeting of BCL2 and MCL1 rescues myeloma cells resistant to BCL2 and MCL1 inhibitors associated with the formation of BAX/BAK hetero-complexes. Cell Death Dis., 2020, 11(5), 316. doi: 10.1038/s41419-020-2505-1 PMID: 32371863
- Phillips, D.C.; Xiao, Y.; Lam, L.T.; Litvinovich, E.; Roberts-Rapp, L.; Souers, A.J.; Leverson, J.D. Loss in MCL-1 function sensitizes non-Hodgkin’s lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J., 2015, 5(11), e368-e368. doi: 10.1038/bcj.2015.88 PMID: 26565405
- Algarín, E.M.; Díaz-Tejedor, A.; Mogollón, P.; Hernández-García, S.; Corchete, L.A.; San-Segundo, L.; Martín-Sánchez, M.; González-Méndez, L.; Schoumacher, M.; Banquet, S.; Kraus-Berthier, L.; Kloos, I.; Derreal, A.; Halilovic, E.; Maacke, H.; Gutiérrez, N.C.; Mateos, M.V.; Paíno, T.; Garayoa, M.; Ocio, E.M. Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma. Haematologica, 2020, 105(3), e116-e120. doi: 10.3324/haematol.2018.212308 PMID: 31320555
- Zheng, C.H.; Zhou, Y.J.; Zhu, J.; Chen, J.; Li, Y.W.; Sheng, C.Q.; Song, Y.L.; Lu, J.G.; Jiang, J.H.; Liu, N. Property analysis of inhibitors-binding site of Bcl-2 protein. Chem. J. Chinese U., 2008, 29(3), 591-595.
- Zheng, C.H.; Zhou, Y.J.; Zhu, J.; Ji, H.T.; Chen, J.; Li, Y.W.; Sheng, C.Q.; Lu, J.G.; Jiang, J.H.; Tang, H.; Song, Y.L. Construction of a three-dimensional pharmacophore for Bcl-2 inhibitors by flexible docking and the multiple copy simultaneous search method. Bioorg. Med. Chem., 2007, 15(19), 6407-6417. doi: 10.1016/j.bmc.2007.06.052 PMID: 17629704
- Hamdy, R.; Ziedan, N.I.; Ali, S.; Bordoni, C.; El-Sadek, M.; Lashin, E.; Brancale, A.; Jones, A.T.; Westwell, A.D. Synthesis and evaluation of 5-(1 H -indol-3-yl)- N -aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 1037-1040. doi: 10.1016/j.bmcl.2016.12.061 PMID: 28087272
- Kamath, P.R.; Sunil, D.; Das, S.; Abdul Salam, A.A.; Rao, B.S.S. Efficient T3P® mediated synthesis, differential cytotoxicity and apoptosis induction by indolo-triazolo-thiadiazoles in human breast adenocarcinoma cells. Chem. Biol. Interact., 2017, 268, 53-67. doi: 10.1016/j.cbi.2017.02.011 PMID: 28235427
- Kamath, P.R.; Sunil, D.; Ajees, A.A.; Pai, K.S.R.; Biswas, S.N. ′-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur. J. Med. Chem., 2016, 120, 134-147. doi: 10.1016/j.ejmech.2016.05.010 PMID: 27187865
- Zhang, Z.; Wu, G.; Xie, F.; Song, T.; Chang, X. 3-Thiomorpholin-8-oxo-8H-acenaphtho1,2-bpyrrole-9-carbonitrile (S1) based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure-activity relationship studies. J. Med. Chem., 2011, 54(4), 1101-1105. doi: 10.1021/jm101181u PMID: 21235240
- Wang, M.; Tian, W.; Wang, C.; Lu, S.; Yang, C.; Wang, J.; Song, Y.; Zhou, Y.; Zhu, J.; Li, Z.; Zheng, C. Design, synthesis, and activity evaluation of selective inhibitors of anti-apoptotic Bcl-2 proteins: The effects on the selectivity of the P1 pockets in the active sites. Bioorg. Med. Chem. Lett., 2016, 26(21), 5207-5211. doi: 10.1016/j.bmcl.2016.09.061 PMID: 27712939
- Fu, H.; Hou, X.; Wang, L.; Dun, Y.; Yang, X.; Fang, H. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(22), 5265-5269. doi: 10.1016/j.bmcl.2015.09.051 PMID: 26421995
- Wang, G.; Wang, Y.; Wang, L.; Han, L.; Hou, X.; Fu, H.; Fang, H. Design, synthesis and preliminary bioactivity studies of imidazolidine-2,4-dione derivatives as Bcl-2 inhibitors. Bioorg. Med. Chem., 2015, 23(23), 7359-7365. doi: 10.1016/j.bmc.2015.10.023 PMID: 26558516
- Aboalhaija, N.H.; Zihlif, M.A.; Taha, M.O. Discovery of new selective cytotoxic agents against Bcl-2 expressing cancer cells using ligand-based modeling. Chem. Biol. Interact., 2016, 250, 12-26. doi: 10.1016/j.cbi.2016.03.006 PMID: 26954606
- Hamdy, R.; Elseginy, S.A.; Ziedan, N.I.; El-Sadek, M.; Lashin, E.; Jones, A.T.; Westwell, A.D. Design, synthesis and evaluation of new bioactive oxadiazole derivatives as anticancer agents targeting Bcl-2. Int. J. Mol. Sci., 2020, 21(23), 8980. doi: 10.3390/ijms21238980 PMID: 33256166
- Nagy, M.I.; Darwish, K.M.; Kishk, S.M.; Tantawy, M.A.; Nasr, A.M.; Qushawy, M.; Swidan, S.A.; Mostafa, S.M.; Salama, I. Design, synthesis, anticancer activity, and solid lipid nanoparticle formulation of indole- and benzimidazole-based compounds as pro-apoptotic agents targeting Bcl-2 protein. Pharmaceuticals (Basel), 2021, 14(2), 113. doi: 10.3390/ph14020113 PMID: 33535550
- Lamie, P.F.; Philoppes, J.N. Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors. Bioorg. Chem., 2021, 116, 105335. doi: 10.1016/j.bioorg.2021.105335 PMID: 34509795
- Deng, H.; Huang, M.; Liu, H.; Zhang, H.; Liu, L.; Gao, B.; Li, X.; Li, J.; Niu, Q.; Zhang, Z.; Luan, S.; Zhang, J.; Jing, Y.; Liu, D.; Zhao, L. Development of a series of novel Mcl-1 inhibitors bearing an indole carboxylic acid moiety. Bioorg. Chem., 2022, 127, 106018. doi: 10.1016/j.bioorg.2022.106018 PMID: 35901526
Қосымша файлдар
