Pioneering the Battle Against Breast Cancer: The Promise of New Bcl-2 Family


Citar

Texto integral

Resumo

Currently, breast cancer is the most common cancer type, accounting for 1 in every 4 cancer cases. Leading both in mortality and incidence, breast cancer causes 1 in 4 cancer deaths. To decrease the burden of breast cancer, novel therapeutic agents which target the key hallmarks of cancer, are being explored. The Bcl-2 family of proteins has a crucial role in governing cell death, making them an attractive target for cancer therapy. As cancer chemotherapies lead to oncogenic stress, cancer cells upregulate the Bcl-2 family to overcome apoptosis, leading to failure of treatment. To fix this issue, Bcl-2 family inhibitors, which can cause cell death, have been introduced as novel therapeutic agents. Members of this group have shown promising results in in-vitro studies, and some are currently in clinical trials. In this review, we will investigate Bcl-2 family inhibitors, which are already in trials as monotherapy or combination therapy for breast cancer, and we will also highlight the result of in vitro studies of novel Bcl-2 family inhibitors on breast cancer cells. The findings of these studies have yielded encouraging outcomes regarding the identification of novel Bcl-2 family inhibitors. These compounds hold significant potential as efficacious agents for employment in both monotherapy and combination therapy settings.

Sobre autores

Ali Boroujeni

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University

Email: info@benthamscience.net

Zeynep Ates-Alagoz

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Heer, E.; Harper, A.; Escandor, N.; Sung, H.; McCormack, V.; Fidler-Benaoudia, M.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study. Lancet Glob. Health, 2020, 8(8), e1027-e1037. doi: 10.1016/S2214-109X(20)30215-1 PMID: 32710860
  3. Strasser, A.; Cory, S.; Adams, J.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J., 2011, 30(18), 3667-3683. doi: 10.1038/emboj.2011.307 PMID: 21863020
  4. Chonghaile, T.N.; Sarosiek, K.A.; Vo, T.T.; Ryan, J.A.; Tammareddi, A.; Moore, V.D.G.; Deng, J.; Anderson, K.C.; Richardson, P.; Tai, Y.T.; Mitsiades, C.S.; Matulonis, U.A.; Drapkin, R.; Stone, R.; DeAngelo, D.J.; McConkey, D.J.; Sallan, S.E.; Silverman, L.; Hirsch, M.S.; Carrasco, D.R.; Letai, A. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science, 2011, 334(6059), 1129-1133. doi: 10.1126/science.1206727 PMID: 22033517
  5. Dawson, S-J.; Makretsov, N.; Blows, F.M.; Driver, K.E.; Provenzano, E.; Le Quesne, J.; Baglietto, L.; Severi, G.; Giles, G.G.; McLean, C.A.; Callagy, G.; Green, A.R.; Ellis, I.; Gelmon, K.; Turashvili, G.; Leung, S.; Aparicio, S.; Huntsman, D.; Caldas, C.; Pharoah, P. Bcl-2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br. J. Cancer, 2010, 103(5), 668-675. doi: 10.1038/sj.bjc.6605736 PMID: 20664598
  6. Oakes, S.R.; Vaillant, F.; Lim, E.; Lee, L.; Breslin, K.; Feleppa, F.; Deb, S.; Ritchie, M.E.; Takano, E.; Ward, T.; Fox, S.B.; Generali, D.; Smyth, G.K.; Strasser, A.; Huang, D.C.S.; Visvader, J.E.; Lindeman, G.J. Sensitization of BCL-2–expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 2766-2771. doi: 10.1073/pnas.1104778108 PMID: 21768359
  7. Vaillant, F.; Merino, D.; Lee, L.; Breslin, K.; Pal, B.; Ritchie, M.E.; Smyth, G.K.; Christie, M.; Phillipson, L.J.; Burns, C.J.; Mann, G.B.; Visvader, J.E.; Lindeman, G.J. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell, 2013, 24(1), 120-129. doi: 10.1016/j.ccr.2013.06.002 PMID: 23845444
  8. Merino, D.; Lok, S.W.; Visvader, J.E.; Lindeman, G.J. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene, 2016, 35(15), 1877-1887. doi: 10.1038/onc.2015.287 PMID: 26257067
  9. Pommier, Y.; Sordet, O.; Antony, S.; Hayward, R.L.; Kohn, K.W. Apoptosis defects and chemotherapy resistance: Molecular interaction maps and networks. Oncogene, 2004, 23(16), 2934-2949. doi: 10.1038/sj.onc.1207515 PMID: 15077155
  10. Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417. doi: 10.1038/s41571-020-0341-y PMID: 32203277
  11. Zhang, C.; Wang, H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(5), 188798. doi: 10.1016/j.bbcan.2022.188798 PMID: 36096336
  12. Fowler-Shorten, D.J.; Hellmich, C.; Markham, M.; Bowles, K.M.; Rushworth, S.A. BCL-2 inhibition in haematological malignancies: Clinical application and complications. Blood Rev., 2024, 65, 101195. doi: 10.1016/j.blre.2024.101195 PMID: 38523032
  13. Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the Bcl-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63. doi: 10.1038/nrm3722 PMID: 24355989
  14. Roy, S.; Nicholson, D.W. Cross-talk in cell death signaling. J. Exp. Med., 2000, 192(8), F21-F26. doi: 10.1084/jem.192.8.F21 PMID: 11034612
  15. Wei, M.C.; Zong, W.X.; Cheng, E.H.Y.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A.J.; Roth, K.A.; MacGregor, G.R.; Thompson, C.B.; Korsmeyer, S.J. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science, 2001, 292(5517), 727-730. doi: 10.1126/science.1059108 PMID: 11326099
  16. Llambi, F.; Moldoveanu, T.; Tait, S.W.G.; Bouchier-Hayes, L.; Temirov, J.; McCormick, L.L.; Dillon, C.P.; Green, D.R. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell, 2011, 44(4), 517-531. doi: 10.1016/j.molcel.2011.10.001 PMID: 22036586
  17. Brunelle, J.K.; Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci., 2009, 122(4), 437-441. doi: 10.1242/jcs.031682 PMID: 19193868
  18. Letai, A.; Bassik, M.C.; Walensky, L.D.; Sorcinelli, M.D.; Weiler, S.; Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2002, 2(3), 183-192. doi: 10.1016/S1535-6108(02)00127-7 PMID: 12242151
  19. Sarosiek, K.A.; Chi, X.; Bachman, J.A.; Sims, J.J.; Montero, J.; Patel, L.; Flanagan, A.; Andrews, D.W.; Sorger, P.; Letai, A. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol. Cell, 2013, 51(6), 751-765. doi: 10.1016/j.molcel.2013.08.048 PMID: 24074954
  20. Akl, H.; Vervloessem, T.; Kiviluoto, S.; Bittremieux, M.; Parys, J.B.; De Smedt, H.; Bultynck, G. A dual role for the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus endoplasmic reticulum. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(10), 2240-2252. doi: 10.1016/j.bbamcr.2014.04.017 PMID: 24768714
  21. Chipuk, J.E.; Green, D.R. How do Bcl-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol., 2008, 18(4), 157-164. doi: 10.1016/j.tcb.2008.01.007 PMID: 18314333
  22. Tait, S.W.G.; Green, D.R. Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol., 2010, 11(9), 621-632. doi: 10.1038/nrm2952 PMID: 20683470
  23. Colell, A.; Ricci, J.E.; Tait, S.; Milasta, S.; Maurer, U.; Bouchier-Hayes, L.; Fitzgerald, P.; Guio-Carrion, A.; Waterhouse, N.J.; Li, C.W.; Mari, B.; Barbry, P.; Newmeyer, D.D.; Beere, H.M.; Green, D.R. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell, 2007, 129(5), 983-997. doi: 10.1016/j.cell.2007.03.045 PMID: 17540177
  24. Lartigue, L.; Kushnareva, Y.; Seong, Y.; Lin, H.; Faustin, B.; Newmeyer, D.D. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell, 2009, 20(23), 4871-4884. doi: 10.1091/mbc.e09-07-0649 PMID: 19793916
  25. Gross, A.; Katz, S.G. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ., 2017, 24(8), 1348-1358. doi: 10.1038/cdd.2017.22 PMID: 28234359
  26. Liu, T.; Wu, Z.; He, Y.; Xiao, Y.; Xia, C. Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy. Eur. J. Med. Chem., 2020, 201, 112446. doi: 10.1016/j.ejmech.2020.112446 PMID: 32563811
  27. Moulder, S.L.; Symmans, W.F.; Booser, D.J.; Madden, T.L.; Lipsanen, C.; Yuan, L.; Brewster, A.M.; Cristofanilli, M.; Hunt, K.K.; Buchholz, T.A.; Zwiebel, J.; Valero, V.; Hortobagyi, G.N.; Esteva, F.J. Phase I/II study of G3139 (Bcl-2 antisense oligonucleotide) in combination with doxorubicin and docetaxel in breast cancer. Clin. Cancer Res., 2008, 14(23), 7909-7916. doi: 10.1158/1078-0432.CCR-08-1104 PMID: 19047121
  28. Rom, J.; von Minckwitz, G.; Marmé, F.; Ataseven, B.; Kozian, D.; Sievert, M.; Schlehe, B.; Schuetz, F.; Scharf, A.; Kaufmann, M.; Sohn, C.; Schneeweiss, A. Phase I study of apoptosis gene modulation with oblimersen within preoperative chemotherapy in patients with primary breast cancer. Ann. Oncol., 2009, 20(11), 1829-1835. doi: 10.1093/annonc/mdp208 PMID: 19605509
  29. Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129. doi: 10.1073/pnas.97.13.7124 PMID: 10860979
  30. An, J.; Chen, Y.; Huang, Z. Critical upstream signals of cytochrome C release induced by a novel Bcl-2 inhibitor. J. Biol. Chem., 2004, 279(18), 19133-19140. doi: 10.1074/jbc.M400295200 PMID: 14966123
  31. Oliver, C.L.; Miranda, M.B.; Shangary, S.; Land, S.; Wang, S.; Johnson, D.E. (−)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-XL-mediated apoptosis resistance. Mol. Cancer Ther., 2005, 4(1), 23-31. doi: 10.1158/1535-7163.23.4.1 PMID: 15657350
  32. Baggstrom, M.Q.; Qi, Y.; Koczywas, M.; Argiris, A.; Johnson, E.A.; Millward, M.J.; Murphy, S.C.; Erlichman, C.; Rudin, C.M.; Govindan, R. A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J. Thorac. Oncol., 2011, 6(10), 1757-1760. doi: 10.1097/JTO.0b013e31822e2941 PMID: 21918390
  33. Schenk, R.L.; Strasser, A.; Dewson, G. BCL-2: Long and winding path from discovery to therapeutic target. Biochem. Biophys. Res. Commun., 2017, 482(3), 459-469. doi: 10.1016/j.bbrc.2016.10.100 PMID: 28212732
  34. Konopleva, M.; Watt, J.; Contractor, R.; Tsao, T.; Harris, D.; Estrov, Z.; Bornmann, W.; Kantarjian, H.; Viallet, J.; Samudio, I.; Andreeff, M. Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res., 2008, 68(9), 3413-3420. doi: 10.1158/0008-5472.CAN-07-1919 PMID: 18451169
  35. Nguyen, M.; Marcellus, R.C.; Roulston, A.; Watson, M.; Serfass, L.; Murthy Madiraju, S.R.; Goulet, D.; Viallet, J.; Bélec, L.; Billot, X.; Acoca, S.; Purisima, E.; Wiegmans, A.; Cluse, L.; Johnstone, R.W.; Beauparlant, P.; Shore, G.C. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19512-19517. doi: 10.1073/pnas.0709443104 PMID: 18040043
  36. Wilson, W.H.; O’Connor, O.A.; Czuczman, M.S.; LaCasce, A.S.; Gerecitano, J.F.; Leonard, J.P.; Tulpule, A.; Dunleavy, K.; Xiong, H.; Chiu, Y.L.; Cui, Y.; Busman, T.; Elmore, S.W.; Rosenberg, S.H.; Krivoshik, A.P.; Enschede, S.H.; Humerickhouse, R.A. Navitoclax, a targeted high-affinity inhibitor of Bcl-2, in lymphoid malignancies: A phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol., 2010, 11(12), 1149-1159. doi: 10.1016/S1470-2045(10)70261-8 PMID: 21094089
  37. Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O’Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681. doi: 10.1038/nature03579 PMID: 15902208
  38. van Delft, M.F.; Wei, A.H.; Mason, K.D.; Vandenberg, C.J.; Chen, L.; Czabotar, P.E.; Willis, S.N.; Scott, C.L.; Day, C.L.; Cory, S.; Adams, J.M.; Roberts, A.W.; Huang, D.C.S. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell, 2006, 10(5), 389-399. doi: 10.1016/j.ccr.2006.08.027 PMID: 17097561
  39. Tse, C.; Shoemaker, A.R.; Adickes, J.; Anderson, M.G.; Chen, J.; Jin, S.; Johnson, E.F.; Marsh, K.C.; Mitten, M.J.; Nimmer, P.; Roberts, L.; Tahir, S.K.; Xiao, Y.; Yang, X.; Zhang, H.; Fesik, S.; Rosenberg, S.H.; Elmore, S.W. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res., 2008, 68(9), 3421-3428. doi: 10.1158/0008-5472.CAN-07-5836 PMID: 18451170
  40. Roberts, A.W.; Seymour, J.F.; Brown, J.R.; Wierda, W.G.; Kipps, T.J.; Khaw, S.L.; Carney, D.A.; He, S.Z.; Huang, D.C.S.; Xiong, H.; Cui, Y.; Busman, T.A.; McKeegan, E.M.; Krivoshik, A.P.; Enschede, S.H.; Humerickhouse, R. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol., 2012, 30(5), 488-496. doi: 10.1200/JCO.2011.34.7898 PMID: 22184378
  41. Zhang, L.; Lu, Z.; Zhao, X. Targeting Bcl-2 for cancer therapy. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188569. doi: 10.1016/j.bbcan.2021.188569 PMID: 34015412
  42. Roberts, A.W.; Advani, R.H.; Kahl, B.S.; Persky, D.; Sweetenham, J.W.; Carney, D.A.; Yang, J.; Busman, T.B.; Enschede, S.H.; Humerickhouse, R.A.; Seymour, J.F. Phase 1 study of the safety, pharmacokinetics, and antitumour activity of the BCL2 inhibitor navitoclax in combination with rituximab in patients with relapsed or refractory CD20+ lymphoid malignancies. Br. J. Haematol., 2015, 170(5), 669-678. doi: 10.1111/bjh.13487 PMID: 25942994
  43. Kipps, T.J.; Eradat, H.; Grosicki, S.; Catalano, J.; Cosolo, W.; Dyagil, I.S.; Yalamanchili, S.; Chai, A.; Sahasranaman, S.; Punnoose, E.; Hurst, D.; Pylypenko, H. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk. Lymphoma, 2015, 56(10), 2826-2833. doi: 10.3109/10428194.2015.1030638 PMID: 25797560
  44. Schoenwaelder, S.M.; Jarman, K.E.; Gardiner, E.E.; Hua, M.; Qiao, J.; White, M.J.; Josefsson, E.C.; Alwis, I.; Ono, A.; Willcox, A.; Andrews, R.K.; Mason, K.D.; Salem, H.H.; Huang, D.C.S.; Kile, B.T.; Roberts, A.W.; Jackson, S.P. Bcl-xL–inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood, 2011, 118(6), 1663-1674. doi: 10.1182/blood-2011-04-347849 PMID: 21673344
  45. Kile, B.T. The role of apoptosis in megakaryocytes and platelets. Br. J. Haematol., 2014, 165(2), 217-226. doi: 10.1111/bjh.12757 PMID: 24467740
  46. Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.S.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C.M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208. doi: 10.1038/nm.3048 PMID: 23291630
  47. Yang, S.; Mao, Y.; Zhang, H.; Xu, Y.; An, J.; Huang, Z. The chemical biology of apoptosis: Revisited after 17 years. Eur. J. Med. Chem., 2019, 177, 63-75. doi: 10.1016/j.ejmech.2019.05.019 PMID: 31129454
  48. Pan, R.; Hogdal, L.J.; Benito, J.M.; Bucci, D.; Han, L.; Borthakur, G.; Cortes, J.; DeAngelo, D.J.; Debose, L.; Mu, H.; Döhner, H.; Gaidzik, V.I.; Galinsky, I.; Golfman, L.S.; Haferlach, T.; Harutyunyan, K.G.; Hu, J.; Leverson, J.D.; Marcucci, G.; Müschen, M.; Newman, R.; Park, E.; Ruvolo, P.P.; Ruvolo, V.; Ryan, J.; Schindela, S.; Zweidler-McKay, P.; Stone, R.M.; Kantarjian, H.; Andreeff, M.; Konopleva, M.; Letai, A.G. Selective Bcl-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov., 2014, 4(3), 362-375. doi: 10.1158/2159-8290.CD-13-0609 PMID: 24346116
  49. Touzeau, C.; Dousset, C.; Le Gouill, S.; Sampath, D.; Leverson, J.D.; Souers, A.J.; Maïga, S.; Béné, M.C.; Moreau, P.; Pellat-Deceunynck, C.; Amiot, M. The Bcl-2 specific BH3 mimetic ABT-199: A promising targeted therapy for t(11;14) multiple myeloma. Leukemia, 2014, 28(1), 210-212. doi: 10.1038/leu.2013.216 PMID: 23860449
  50. Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; Wong, S.; Dunbar, M.; Zhu, M.; Desai, M.B.; Cerri, E.; Heitner Enschede, S.; Humerickhouse, R.A.; Wierda, W.G.; Seymour, J.F. Targeting Bcl-2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med., 2016, 374(4), 311-322. doi: 10.1056/NEJMoa1513257 PMID: 26639348
  51. Stilgenbauer, S.; Eichhorst, B.; Schetelig, J.; Coutre, S.; Seymour, J.F.; Munir, T.; Puvvada, S.D.; Wendtner, C.M.; Roberts, A.W.; Jurczak, W.; Mulligan, S.P.; Böttcher, S.; Mobasher, M.; Zhu, M.; Desai, M.; Chyla, B.; Verdugo, M.; Enschede, S.H.; Cerri, E.; Humerickhouse, R.; Gordon, G.; Hallek, M.; Wierda, W.G. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: A multicentre, open-label, phase 2 study. Lancet Oncol., 2016, 17(6), 768-778. doi: 10.1016/S1470-2045(16)30019-5 PMID: 27178240
  52. Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; De la Serna, J.; Jaeger, U.; Cartron, G.; Montillo, M.; Humerickhouse, R.; Punnoose, E.A.; Li, Y.; Boyer, M.; Humphrey, K.; Mobasher, M.; Kater, A.P. Venetoclax–rituximab in relapsed or refractory chronic lymphocytic leukemia. N. Engl. J. Med., 2018, 378(12), 1107-1120. doi: 10.1056/NEJMoa1713976 PMID: 29562156
  53. Lok, S.W.; Whittle, J.R.; Vaillant, F.; Teh, C.E.; Lo, L.L.; Policheni, A.N.; Bergin, A.R.T.; Desai, J.; Ftouni, S.; Gandolfo, L.C.; Liew, D.; Liu, H.K.; Mann, G.B.; Moodie, K.; Murugasu, A.; Pal, B.; Roberts, A.W.; Rosenthal, M.A.; Shackleton, K.; Silva, M.J.; Siow, Z.R.; Smyth, G.K.; Taylor, L.; Travers, A.; Yeo, B.; Yeung, M.M.; Bujak, A.Z.; Dawson, S.J.; Gray, D.H.D.; Visvader, J.E.; Lindeman, G.J. A phase Ib dose-escalation and expansion study of the Bcl-2 inhibitor venetoclax combined with tamoxifen in er and BCL2–positive metastatic breast cancer. Cancer Discov., 2019, 9(3), 354-369. doi: 10.1158/2159-8290.CD-18-1151 PMID: 30518523
  54. Vogler, M. Targeting Bcl-2-proteins for the treatment of solid tumours. Adv. Med., 2014, 2014, 1-14. doi: 10.1155/2014/943648 PMID: 26556430
  55. Levesley, J.; Steele, L.; Brüning-Richardson, A.; Davison, A.; Zhou, J.; Ding, C.; Lawler, S.; Short, S.C. Selective BCL-XL inhibition promotes apoptosis in combination with MLN8237 in medulloblastoma and pediatric glioblastoma cells. Neuro-oncol., 2018, 20(2), 203-214. doi: 10.1093/neuonc/nox134 PMID: 29016820
  56. Lessene, G.; Czabotar, P.E.; Sleebs, B.E.; Zobel, K.; Lowes, K.N.; Adams, J.M.; Baell, J.B.; Colman, P.M.; Deshayes, K.; Fairbrother, W.J.; Flygare, J.A.; Gibbons, P.; Kersten, W.J.A.; Kulasegaram, S.; Moss, R.M.; Parisot, J.P.; Smith, B.J.; Street, I.P.; Yang, H.; Huang, D.C.S.; Watson, K.G. Structure-guided design of a selective BCL-XL inhibitor. Nat. Chem. Biol., 2013, 9(6), 390-397. doi: 10.1038/nchembio.1246 PMID: 23603658
  57. Abed, M.N.; Abdullah, M.I.; Richardson, A. Antagonism of Bcl-XL is necessary for synergy between carboplatin and BH3 mimetics in ovarian cancer cells. J. Ovarian Res., 2016, 9(1), 25. doi: 10.1186/s13048-016-0234-y PMID: 27080533
  58. Lucantoni, F.; Lindner, A.U.; O’Donovan, N.; Düssmann, H.; Prehn, J.H.M. Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis., 2018, 9(2), 42. doi: 10.1038/s41419-017-0039-y PMID: 29352235
  59. Tao, Z.F.; Hasvold, L.; Wang, L.; Wang, X.; Petros, A.M.; Park, C.H.; Boghaert, E.R.; Catron, N.D.; Chen, J.; Colman, P.M. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med. Chem. Lett., 2014, 5(10), 1088-1093. doi: 10.1021/ml5001867
  60. Wang, L.; Doherty, G.A.; Judd, A.S.; Tao, Z.F.; Hansen, T.M.; Frey, R.R.; Song, X.; Bruncko, M.; Kunzer, A.R.; Wang, X.; Wendt, M.D.; Flygare, J.A.; Catron, N.D.; Judge, R.A.; Park, C.H.; Shekhar, S.; Phillips, D.C.; Nimmer, P.; Smith, M.L.; Tahir, S.K.; Xiao, Y.; Xue, J.; Zhang, H.; Le, P.N.; Mitten, M.J.; Boghaert, E.R.; Gao, W.; Kovar, P.; Choo, E.F.; Diaz, D.; Fairbrother, W.J.; Elmore, S.W.; Sampath, D.; Leverson, J.D.; Souers, A.J. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-X L Inhibitor. ACS Med. Chem. Lett., 2020, 11(10), 1829-1836. doi: 10.1021/acsmedchemlett.9b00568 PMID: 33062160
  61. Leverson, J.D.; Phillips, D.C.; Mitten, M.J.; Boghaert, E.R.; Diaz, D.; Tahir, S.K.; Belmont, L.D.; Nimmer, P.; Xiao, Y.; Ma, X.M.; Lowes, K.N.; Kovar, P.; Chen, J.; Jin, S.; Smith, M.; Xue, J.; Zhang, H.; Oleksijew, A.; Magoc, T.J.; Vaidya, K.S.; Albert, D.H.; Tarrant, J.M.; La, N.; Wang, L.; Tao, Z.F.; Wendt, M.D.; Sampath, D.; Rosenberg, S.H.; Tse, C.; Huang, D.C.; Fairbrother, W.J.; Elmore, S.W.; Souers, A.J. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl. Med., 2015, 7(279), 279ra40. doi: 10.1126/scitranslmed.aaa4642 PMID: 25787766
  62. FDA authorisation of first-in-human clinical trial with AstraZeneca’s DEP® product AZD0466. 2024. Available from: https://starpharma.com/news/view/view/436/fda-authorisation-of-first-in-human-clinical-trial-with-astrazenecaas-dep-product-azd0466
  63. Ploumaki, I.; Triantafyllou, E.; Koumprentziotis, I.A.; Karampinos, K.; Drougkas, K.; Karavolias, I.; Trontzas, I.; Kotteas, E.A. Bcl-2 pathway inhibition in solid tumors: A review of clinical trials. Clin. Transl. Oncol., 2023, 25(6), 1554-1578. doi: 10.1007/s12094-022-03070-9 PMID: 36639602
  64. Kehr, S.; Vogler, M. It’s time to die: BH3 mimetics in solid tumors. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(5), 118987. doi: 10.1016/j.bbamcr.2021.118987 PMID: 33600840
  65. Kotschy, A.; Szlavik, Z.; Murray, J.; Davidson, J.; Maragno, A.L.; Le Toumelin-Braizat, G.; Chanrion, M.; Kelly, G.L.; Gong, J.N.; Moujalled, D.M.; Bruno, A.; Csekei, M.; Paczal, A.; Szabo, Z.B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Ondi, L.; Blasko, G.; Robertson, A.; Surgenor, A.; Dokurno, P.; Chen, I.; Matassova, N.; Smith, J.; Pedder, C.; Graham, C.; Studeny, A.; Lysiak-Auvity, G.; Girard, A.M.; Gravé, F.; Segal, D.; Riffkin, C.D.; Pomilio, G.; Galbraith, L.C.A.; Aubrey, B.J.; Brennan, M.S.; Herold, M.J.; Chang, C.; Guasconi, G.; Cauquil, N.; Melchiore, F.; Guigal-Stephan, N.; Lockhart, B.; Colland, F.; Hickman, J.A.; Roberts, A.W.; Huang, D.C.S.; Wei, A.H.; Strasser, A.; Lessene, G.; Geneste, O. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature, 2016, 538(7626), 477-482. doi: 10.1038/nature19830 PMID: 27760111
  66. Leverson, J.D.; Zhang, H.; Chen, J.; Tahir, S.K.; Phillips, D.C.; Xue, J.; Nimmer, P.; Jin, S.; Smith, M.; Xiao, Y.; Kovar, P.; Tanaka, A.; Bruncko, M.; Sheppard, G.S.; Wang, L.; Gierke, S.; Kategaya, L.; Anderson, D.J.; Wong, C.; Eastham-Anderson, J.; Ludlam, M.J.C.; Sampath, D.; Fairbrother, W.J.; Wertz, I.; Rosenberg, S.H.; Tse, C.; Elmore, S.W.; Souers, A.J. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis., 2015, 6(1), e1590-e1590. doi: 10.1038/cddis.2014.561 PMID: 25590800
  67. Merino, D.; Whittle, J.R.; Vaillant, F.; Serrano, A.; Gong, J.N.; Giner, G.; Maragno, A.L.; Chanrion, M.; Schneider, E.; Pal, B.; Li, X.; Dewson, G.; Gräsel, J.; Liu, K.; Lalaoui, N.; Segal, D.; Herold, M.J.; Huang, D.C.S.; Smyth, G.K.; Geneste, O.; Lessene, G.; Visvader, J.E.; Lindeman, G.J. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci. Transl. Med., 2017, 9(401), eaam7049. doi: 10.1126/scitranslmed.aam7049 PMID: 28768804
  68. Szlávik, Z.; Ondi, L.; Csékei, M.; Paczal, A.; Szabó, Z.B.; Radics, G.; Murray, J.; Davidson, J.; Chen, I.; Davis, B.; Hubbard, R.E.; Pedder, C.; Dokurno, P.; Surgenor, A.; Smith, J.; Robertson, A.; LeToumelin-Braizat, G.; Cauquil, N.; Zarka, M.; Demarles, D.; Perron-Sierra, F.; Claperon, A.; Colland, F.; Geneste, O.; Kotschy, A. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity. J. Med. Chem., 2019, 62(15), 6913-6924. doi: 10.1021/acs.jmedchem.9b00134 PMID: 31339316
  69. Fletcher, S. MCL-1 inhibitors - Where are we now (2019)? Expert Opin. Ther. Pat., 2019, 29(11), 909-919. doi: 10.1080/13543776.2019.1672661
  70. Szlavik, Z.; Csekei, M.; Paczal, A.; Szabo, Z.B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Murray, J.; Davidson, J.; Chen, I.; Dokurno, P.; Surgenor, A.E.; Daniels, Z.M.; Hubbard, R.E.; Le Toumelin-Braizat, G.; Claperon, A.; Lysiak-Auvity, G.; Girard, A.M.; Bruno, A.; Chanrion, M.; Colland, F.; Maragno, A.L.; Demarles, D.; Geneste, O.; Kotschy, A. Discovery of S64315, a potent and selective Mcl-1 inhibitor. J. Med. Chem., 2020, 63(22), 13762-13795. doi: 10.1021/acs.jmedchem.0c01234 PMID: 33146521
  71. Tron, A.E.; Belmonte, M.A.; Adam, A.; Aquila, B.M.; Boise, L.H.; Chiarparin, E.; Cidado, J.; Embrey, K.J.; Gangl, E.; Gibbons, F.D.; Gregory, G.P.; Hargreaves, D.; Hendricks, J.A.; Johannes, J.W.; Johnstone, R.W.; Kazmirski, S.L.; Kettle, J.G.; Lamb, M.L.; Matulis, S.M.; Nooka, A.K.; Packer, M.J.; Peng, B.; Rawlins, P.B.; Robbins, D.W.; Schuller, A.G.; Su, N.; Yang, W.; Ye, Q.; Zheng, X.; Secrist, J.P.; Clark, E.A.; Wilson, D.M.; Fawell, S.E.; Hird, A.W. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun., 2018, 9(1), 5341. doi: 10.1038/s41467-018-07551-w PMID: 30559424
  72. Caenepeel, S.; Brown, S.P.; Belmontes, B.; Moody, G.; Keegan, K.S.; Chui, D.; Whittington, D.A.; Huang, X.; Poppe, L.; Cheng, A.C.; Cardozo, M.; Houze, J.; Li, Y.; Lucas, B.; Paras, N.A.; Wang, X.; Taygerly, J.P.; Vimolratana, M.; Zancanella, M.; Zhu, L.; Cajulis, E.; Osgood, T.; Sun, J.; Damon, L.; Egan, R.K.; Greninger, P.; McClanaghan, J.D.; Gong, J.; Moujalled, D.; Pomilio, G.; Beltran, P.; Benes, C.H.; Roberts, A.W.; Huang, D.C.; Wei, A.; Canon, J.; Coxon, A.; Hughes, P.E. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov., 2018, 8(12), 1582-1597. doi: 10.1158/2159-8290.CD-18-0387 PMID: 30254093
  73. Soderquist, R.S.; Crawford, L.; Liu, E.; Lu, M.; Agarwal, A.; Anderson, G.R.; Lin, K.H.; Winter, P.S.; Cakir, M.; Wood, K.C. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat. Commun., 2018, 9(1), 3513. doi: 10.1038/s41467-018-05815-z PMID: 30158527
  74. Seiller, C.; Maiga, S.; Touzeau, C.; Bellanger, C.; Kervoëlen, C.; Descamps, G.; Maillet, L.; Moreau, P.; Pellat-Deceunynck, C.; Gomez-Bougie, P.; Amiot, M. Dual targeting of BCL2 and MCL1 rescues myeloma cells resistant to BCL2 and MCL1 inhibitors associated with the formation of BAX/BAK hetero-complexes. Cell Death Dis., 2020, 11(5), 316. doi: 10.1038/s41419-020-2505-1 PMID: 32371863
  75. Phillips, D.C.; Xiao, Y.; Lam, L.T.; Litvinovich, E.; Roberts-Rapp, L.; Souers, A.J.; Leverson, J.D. Loss in MCL-1 function sensitizes non-Hodgkin’s lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J., 2015, 5(11), e368-e368. doi: 10.1038/bcj.2015.88 PMID: 26565405
  76. Algarín, E.M.; Díaz-Tejedor, A.; Mogollón, P.; Hernández-García, S.; Corchete, L.A.; San-Segundo, L.; Martín-Sánchez, M.; González-Méndez, L.; Schoumacher, M.; Banquet, S.; Kraus-Berthier, L.; Kloos, I.; Derreal, A.; Halilovic, E.; Maacke, H.; Gutiérrez, N.C.; Mateos, M.V.; Paíno, T.; Garayoa, M.; Ocio, E.M. Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma. Haematologica, 2020, 105(3), e116-e120. doi: 10.3324/haematol.2018.212308 PMID: 31320555
  77. Zheng, C.H.; Zhou, Y.J.; Zhu, J.; Chen, J.; Li, Y.W.; Sheng, C.Q.; Song, Y.L.; Lu, J.G.; Jiang, J.H.; Liu, N. Property analysis of inhibitors-binding site of Bcl-2 protein. Chem. J. Chinese U., 2008, 29(3), 591-595.
  78. Zheng, C.H.; Zhou, Y.J.; Zhu, J.; Ji, H.T.; Chen, J.; Li, Y.W.; Sheng, C.Q.; Lu, J.G.; Jiang, J.H.; Tang, H.; Song, Y.L. Construction of a three-dimensional pharmacophore for Bcl-2 inhibitors by flexible docking and the multiple copy simultaneous search method. Bioorg. Med. Chem., 2007, 15(19), 6407-6417. doi: 10.1016/j.bmc.2007.06.052 PMID: 17629704
  79. Hamdy, R.; Ziedan, N.I.; Ali, S.; Bordoni, C.; El-Sadek, M.; Lashin, E.; Brancale, A.; Jones, A.T.; Westwell, A.D. Synthesis and evaluation of 5-(1 H -indol-3-yl)- N -aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 1037-1040. doi: 10.1016/j.bmcl.2016.12.061 PMID: 28087272
  80. Kamath, P.R.; Sunil, D.; Das, S.; Abdul Salam, A.A.; Rao, B.S.S. Efficient T3P® mediated synthesis, differential cytotoxicity and apoptosis induction by indolo-triazolo-thiadiazoles in human breast adenocarcinoma cells. Chem. Biol. Interact., 2017, 268, 53-67. doi: 10.1016/j.cbi.2017.02.011 PMID: 28235427
  81. Kamath, P.R.; Sunil, D.; Ajees, A.A.; Pai, K.S.R.; Biswas, S.N. ′-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur. J. Med. Chem., 2016, 120, 134-147. doi: 10.1016/j.ejmech.2016.05.010 PMID: 27187865
  82. Zhang, Z.; Wu, G.; Xie, F.; Song, T.; Chang, X. 3-Thiomorpholin-8-oxo-8H-acenaphtho1,2-bpyrrole-9-carbonitrile (S1) based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure-activity relationship studies. J. Med. Chem., 2011, 54(4), 1101-1105. doi: 10.1021/jm101181u PMID: 21235240
  83. Wang, M.; Tian, W.; Wang, C.; Lu, S.; Yang, C.; Wang, J.; Song, Y.; Zhou, Y.; Zhu, J.; Li, Z.; Zheng, C. Design, synthesis, and activity evaluation of selective inhibitors of anti-apoptotic Bcl-2 proteins: The effects on the selectivity of the P1 pockets in the active sites. Bioorg. Med. Chem. Lett., 2016, 26(21), 5207-5211. doi: 10.1016/j.bmcl.2016.09.061 PMID: 27712939
  84. Fu, H.; Hou, X.; Wang, L.; Dun, Y.; Yang, X.; Fang, H. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(22), 5265-5269. doi: 10.1016/j.bmcl.2015.09.051 PMID: 26421995
  85. Wang, G.; Wang, Y.; Wang, L.; Han, L.; Hou, X.; Fu, H.; Fang, H. Design, synthesis and preliminary bioactivity studies of imidazolidine-2,4-dione derivatives as Bcl-2 inhibitors. Bioorg. Med. Chem., 2015, 23(23), 7359-7365. doi: 10.1016/j.bmc.2015.10.023 PMID: 26558516
  86. Aboalhaija, N.H.; Zihlif, M.A.; Taha, M.O. Discovery of new selective cytotoxic agents against Bcl-2 expressing cancer cells using ligand-based modeling. Chem. Biol. Interact., 2016, 250, 12-26. doi: 10.1016/j.cbi.2016.03.006 PMID: 26954606
  87. Hamdy, R.; Elseginy, S.A.; Ziedan, N.I.; El-Sadek, M.; Lashin, E.; Jones, A.T.; Westwell, A.D. Design, synthesis and evaluation of new bioactive oxadiazole derivatives as anticancer agents targeting Bcl-2. Int. J. Mol. Sci., 2020, 21(23), 8980. doi: 10.3390/ijms21238980 PMID: 33256166
  88. Nagy, M.I.; Darwish, K.M.; Kishk, S.M.; Tantawy, M.A.; Nasr, A.M.; Qushawy, M.; Swidan, S.A.; Mostafa, S.M.; Salama, I. Design, synthesis, anticancer activity, and solid lipid nanoparticle formulation of indole- and benzimidazole-based compounds as pro-apoptotic agents targeting Bcl-2 protein. Pharmaceuticals (Basel), 2021, 14(2), 113. doi: 10.3390/ph14020113 PMID: 33535550
  89. Lamie, P.F.; Philoppes, J.N. Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors. Bioorg. Chem., 2021, 116, 105335. doi: 10.1016/j.bioorg.2021.105335 PMID: 34509795
  90. Deng, H.; Huang, M.; Liu, H.; Zhang, H.; Liu, L.; Gao, B.; Li, X.; Li, J.; Niu, Q.; Zhang, Z.; Luan, S.; Zhang, J.; Jing, Y.; Liu, D.; Zhao, L. Development of a series of novel Mcl-1 inhibitors bearing an indole carboxylic acid moiety. Bioorg. Chem., 2022, 127, 106018. doi: 10.1016/j.bioorg.2022.106018 PMID: 35901526

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2025