Pioneering the Battle Against Breast Cancer: The Promise of New Bcl-2 Family
- Autores: Boroujeni A.1, Ates-Alagoz Z.1
-
Afiliações:
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University
- Edição: Volume 25, Nº 3 (2025)
- Páginas: 164-178
- Seção: Oncology
- URL: https://genescells.com/1871-5206/article/view/694481
- DOI: https://doi.org/10.2174/0118715206320224240910054728
- ID: 694481
Citar
Texto integral
Resumo
Currently, breast cancer is the most common cancer type, accounting for 1 in every 4 cancer cases. Leading both in mortality and incidence, breast cancer causes 1 in 4 cancer deaths. To decrease the burden of breast cancer, novel therapeutic agents which target the key hallmarks of cancer, are being explored. The Bcl-2 family of proteins has a crucial role in governing cell death, making them an attractive target for cancer therapy. As cancer chemotherapies lead to oncogenic stress, cancer cells upregulate the Bcl-2 family to overcome apoptosis, leading to failure of treatment. To fix this issue, Bcl-2 family inhibitors, which can cause cell death, have been introduced as novel therapeutic agents. Members of this group have shown promising results in in-vitro studies, and some are currently in clinical trials. In this review, we will investigate Bcl-2 family inhibitors, which are already in trials as monotherapy or combination therapy for breast cancer, and we will also highlight the result of in vitro studies of novel Bcl-2 family inhibitors on breast cancer cells. The findings of these studies have yielded encouraging outcomes regarding the identification of novel Bcl-2 family inhibitors. These compounds hold significant potential as efficacious agents for employment in both monotherapy and combination therapy settings.
Palavras-chave
Sobre autores
Ali Boroujeni
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University
Email: info@benthamscience.net
Zeynep Ates-Alagoz
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Heer, E.; Harper, A.; Escandor, N.; Sung, H.; McCormack, V.; Fidler-Benaoudia, M.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study. Lancet Glob. Health, 2020, 8(8), e1027-e1037. doi: 10.1016/S2214-109X(20)30215-1 PMID: 32710860
- Strasser, A.; Cory, S.; Adams, J.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J., 2011, 30(18), 3667-3683. doi: 10.1038/emboj.2011.307 PMID: 21863020
- Chonghaile, T.N.; Sarosiek, K.A.; Vo, T.T.; Ryan, J.A.; Tammareddi, A.; Moore, V.D.G.; Deng, J.; Anderson, K.C.; Richardson, P.; Tai, Y.T.; Mitsiades, C.S.; Matulonis, U.A.; Drapkin, R.; Stone, R.; DeAngelo, D.J.; McConkey, D.J.; Sallan, S.E.; Silverman, L.; Hirsch, M.S.; Carrasco, D.R.; Letai, A. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science, 2011, 334(6059), 1129-1133. doi: 10.1126/science.1206727 PMID: 22033517
- Dawson, S-J.; Makretsov, N.; Blows, F.M.; Driver, K.E.; Provenzano, E.; Le Quesne, J.; Baglietto, L.; Severi, G.; Giles, G.G.; McLean, C.A.; Callagy, G.; Green, A.R.; Ellis, I.; Gelmon, K.; Turashvili, G.; Leung, S.; Aparicio, S.; Huntsman, D.; Caldas, C.; Pharoah, P. Bcl-2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br. J. Cancer, 2010, 103(5), 668-675. doi: 10.1038/sj.bjc.6605736 PMID: 20664598
- Oakes, S.R.; Vaillant, F.; Lim, E.; Lee, L.; Breslin, K.; Feleppa, F.; Deb, S.; Ritchie, M.E.; Takano, E.; Ward, T.; Fox, S.B.; Generali, D.; Smyth, G.K.; Strasser, A.; Huang, D.C.S.; Visvader, J.E.; Lindeman, G.J. Sensitization of BCL-2–expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 2766-2771. doi: 10.1073/pnas.1104778108 PMID: 21768359
- Vaillant, F.; Merino, D.; Lee, L.; Breslin, K.; Pal, B.; Ritchie, M.E.; Smyth, G.K.; Christie, M.; Phillipson, L.J.; Burns, C.J.; Mann, G.B.; Visvader, J.E.; Lindeman, G.J. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell, 2013, 24(1), 120-129. doi: 10.1016/j.ccr.2013.06.002 PMID: 23845444
- Merino, D.; Lok, S.W.; Visvader, J.E.; Lindeman, G.J. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene, 2016, 35(15), 1877-1887. doi: 10.1038/onc.2015.287 PMID: 26257067
- Pommier, Y.; Sordet, O.; Antony, S.; Hayward, R.L.; Kohn, K.W. Apoptosis defects and chemotherapy resistance: Molecular interaction maps and networks. Oncogene, 2004, 23(16), 2934-2949. doi: 10.1038/sj.onc.1207515 PMID: 15077155
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417. doi: 10.1038/s41571-020-0341-y PMID: 32203277
- Zhang, C.; Wang, H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(5), 188798. doi: 10.1016/j.bbcan.2022.188798 PMID: 36096336
- Fowler-Shorten, D.J.; Hellmich, C.; Markham, M.; Bowles, K.M.; Rushworth, S.A. BCL-2 inhibition in haematological malignancies: Clinical application and complications. Blood Rev., 2024, 65, 101195. doi: 10.1016/j.blre.2024.101195 PMID: 38523032
- Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the Bcl-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63. doi: 10.1038/nrm3722 PMID: 24355989
- Roy, S.; Nicholson, D.W. Cross-talk in cell death signaling. J. Exp. Med., 2000, 192(8), F21-F26. doi: 10.1084/jem.192.8.F21 PMID: 11034612
- Wei, M.C.; Zong, W.X.; Cheng, E.H.Y.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A.J.; Roth, K.A.; MacGregor, G.R.; Thompson, C.B.; Korsmeyer, S.J. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science, 2001, 292(5517), 727-730. doi: 10.1126/science.1059108 PMID: 11326099
- Llambi, F.; Moldoveanu, T.; Tait, S.W.G.; Bouchier-Hayes, L.; Temirov, J.; McCormick, L.L.; Dillon, C.P.; Green, D.R. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell, 2011, 44(4), 517-531. doi: 10.1016/j.molcel.2011.10.001 PMID: 22036586
- Brunelle, J.K.; Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci., 2009, 122(4), 437-441. doi: 10.1242/jcs.031682 PMID: 19193868
- Letai, A.; Bassik, M.C.; Walensky, L.D.; Sorcinelli, M.D.; Weiler, S.; Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2002, 2(3), 183-192. doi: 10.1016/S1535-6108(02)00127-7 PMID: 12242151
- Sarosiek, K.A.; Chi, X.; Bachman, J.A.; Sims, J.J.; Montero, J.; Patel, L.; Flanagan, A.; Andrews, D.W.; Sorger, P.; Letai, A. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol. Cell, 2013, 51(6), 751-765. doi: 10.1016/j.molcel.2013.08.048 PMID: 24074954
- Akl, H.; Vervloessem, T.; Kiviluoto, S.; Bittremieux, M.; Parys, J.B.; De Smedt, H.; Bultynck, G. A dual role for the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus endoplasmic reticulum. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(10), 2240-2252. doi: 10.1016/j.bbamcr.2014.04.017 PMID: 24768714
- Chipuk, J.E.; Green, D.R. How do Bcl-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol., 2008, 18(4), 157-164. doi: 10.1016/j.tcb.2008.01.007 PMID: 18314333
- Tait, S.W.G.; Green, D.R. Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol., 2010, 11(9), 621-632. doi: 10.1038/nrm2952 PMID: 20683470
- Colell, A.; Ricci, J.E.; Tait, S.; Milasta, S.; Maurer, U.; Bouchier-Hayes, L.; Fitzgerald, P.; Guio-Carrion, A.; Waterhouse, N.J.; Li, C.W.; Mari, B.; Barbry, P.; Newmeyer, D.D.; Beere, H.M.; Green, D.R. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell, 2007, 129(5), 983-997. doi: 10.1016/j.cell.2007.03.045 PMID: 17540177
- Lartigue, L.; Kushnareva, Y.; Seong, Y.; Lin, H.; Faustin, B.; Newmeyer, D.D. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell, 2009, 20(23), 4871-4884. doi: 10.1091/mbc.e09-07-0649 PMID: 19793916
- Gross, A.; Katz, S.G. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ., 2017, 24(8), 1348-1358. doi: 10.1038/cdd.2017.22 PMID: 28234359
- Liu, T.; Wu, Z.; He, Y.; Xiao, Y.; Xia, C. Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy. Eur. J. Med. Chem., 2020, 201, 112446. doi: 10.1016/j.ejmech.2020.112446 PMID: 32563811
- Moulder, S.L.; Symmans, W.F.; Booser, D.J.; Madden, T.L.; Lipsanen, C.; Yuan, L.; Brewster, A.M.; Cristofanilli, M.; Hunt, K.K.; Buchholz, T.A.; Zwiebel, J.; Valero, V.; Hortobagyi, G.N.; Esteva, F.J. Phase I/II study of G3139 (Bcl-2 antisense oligonucleotide) in combination with doxorubicin and docetaxel in breast cancer. Clin. Cancer Res., 2008, 14(23), 7909-7916. doi: 10.1158/1078-0432.CCR-08-1104 PMID: 19047121
- Rom, J.; von Minckwitz, G.; Marmé, F.; Ataseven, B.; Kozian, D.; Sievert, M.; Schlehe, B.; Schuetz, F.; Scharf, A.; Kaufmann, M.; Sohn, C.; Schneeweiss, A. Phase I study of apoptosis gene modulation with oblimersen within preoperative chemotherapy in patients with primary breast cancer. Ann. Oncol., 2009, 20(11), 1829-1835. doi: 10.1093/annonc/mdp208 PMID: 19605509
- Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129. doi: 10.1073/pnas.97.13.7124 PMID: 10860979
- An, J.; Chen, Y.; Huang, Z. Critical upstream signals of cytochrome C release induced by a novel Bcl-2 inhibitor. J. Biol. Chem., 2004, 279(18), 19133-19140. doi: 10.1074/jbc.M400295200 PMID: 14966123
- Oliver, C.L.; Miranda, M.B.; Shangary, S.; Land, S.; Wang, S.; Johnson, D.E. (−)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-XL-mediated apoptosis resistance. Mol. Cancer Ther., 2005, 4(1), 23-31. doi: 10.1158/1535-7163.23.4.1 PMID: 15657350
- Baggstrom, M.Q.; Qi, Y.; Koczywas, M.; Argiris, A.; Johnson, E.A.; Millward, M.J.; Murphy, S.C.; Erlichman, C.; Rudin, C.M.; Govindan, R. A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J. Thorac. Oncol., 2011, 6(10), 1757-1760. doi: 10.1097/JTO.0b013e31822e2941 PMID: 21918390
- Schenk, R.L.; Strasser, A.; Dewson, G. BCL-2: Long and winding path from discovery to therapeutic target. Biochem. Biophys. Res. Commun., 2017, 482(3), 459-469. doi: 10.1016/j.bbrc.2016.10.100 PMID: 28212732
- Konopleva, M.; Watt, J.; Contractor, R.; Tsao, T.; Harris, D.; Estrov, Z.; Bornmann, W.; Kantarjian, H.; Viallet, J.; Samudio, I.; Andreeff, M. Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res., 2008, 68(9), 3413-3420. doi: 10.1158/0008-5472.CAN-07-1919 PMID: 18451169
- Nguyen, M.; Marcellus, R.C.; Roulston, A.; Watson, M.; Serfass, L.; Murthy Madiraju, S.R.; Goulet, D.; Viallet, J.; Bélec, L.; Billot, X.; Acoca, S.; Purisima, E.; Wiegmans, A.; Cluse, L.; Johnstone, R.W.; Beauparlant, P.; Shore, G.C. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19512-19517. doi: 10.1073/pnas.0709443104 PMID: 18040043
- Wilson, W.H.; O’Connor, O.A.; Czuczman, M.S.; LaCasce, A.S.; Gerecitano, J.F.; Leonard, J.P.; Tulpule, A.; Dunleavy, K.; Xiong, H.; Chiu, Y.L.; Cui, Y.; Busman, T.; Elmore, S.W.; Rosenberg, S.H.; Krivoshik, A.P.; Enschede, S.H.; Humerickhouse, R.A. Navitoclax, a targeted high-affinity inhibitor of Bcl-2, in lymphoid malignancies: A phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol., 2010, 11(12), 1149-1159. doi: 10.1016/S1470-2045(10)70261-8 PMID: 21094089
- Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O’Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681. doi: 10.1038/nature03579 PMID: 15902208
- van Delft, M.F.; Wei, A.H.; Mason, K.D.; Vandenberg, C.J.; Chen, L.; Czabotar, P.E.; Willis, S.N.; Scott, C.L.; Day, C.L.; Cory, S.; Adams, J.M.; Roberts, A.W.; Huang, D.C.S. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell, 2006, 10(5), 389-399. doi: 10.1016/j.ccr.2006.08.027 PMID: 17097561
- Tse, C.; Shoemaker, A.R.; Adickes, J.; Anderson, M.G.; Chen, J.; Jin, S.; Johnson, E.F.; Marsh, K.C.; Mitten, M.J.; Nimmer, P.; Roberts, L.; Tahir, S.K.; Xiao, Y.; Yang, X.; Zhang, H.; Fesik, S.; Rosenberg, S.H.; Elmore, S.W. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res., 2008, 68(9), 3421-3428. doi: 10.1158/0008-5472.CAN-07-5836 PMID: 18451170
- Roberts, A.W.; Seymour, J.F.; Brown, J.R.; Wierda, W.G.; Kipps, T.J.; Khaw, S.L.; Carney, D.A.; He, S.Z.; Huang, D.C.S.; Xiong, H.; Cui, Y.; Busman, T.A.; McKeegan, E.M.; Krivoshik, A.P.; Enschede, S.H.; Humerickhouse, R. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol., 2012, 30(5), 488-496. doi: 10.1200/JCO.2011.34.7898 PMID: 22184378
- Zhang, L.; Lu, Z.; Zhao, X. Targeting Bcl-2 for cancer therapy. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188569. doi: 10.1016/j.bbcan.2021.188569 PMID: 34015412
- Roberts, A.W.; Advani, R.H.; Kahl, B.S.; Persky, D.; Sweetenham, J.W.; Carney, D.A.; Yang, J.; Busman, T.B.; Enschede, S.H.; Humerickhouse, R.A.; Seymour, J.F. Phase 1 study of the safety, pharmacokinetics, and antitumour activity of the BCL2 inhibitor navitoclax in combination with rituximab in patients with relapsed or refractory CD20+ lymphoid malignancies. Br. J. Haematol., 2015, 170(5), 669-678. doi: 10.1111/bjh.13487 PMID: 25942994
- Kipps, T.J.; Eradat, H.; Grosicki, S.; Catalano, J.; Cosolo, W.; Dyagil, I.S.; Yalamanchili, S.; Chai, A.; Sahasranaman, S.; Punnoose, E.; Hurst, D.; Pylypenko, H. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk. Lymphoma, 2015, 56(10), 2826-2833. doi: 10.3109/10428194.2015.1030638 PMID: 25797560
- Schoenwaelder, S.M.; Jarman, K.E.; Gardiner, E.E.; Hua, M.; Qiao, J.; White, M.J.; Josefsson, E.C.; Alwis, I.; Ono, A.; Willcox, A.; Andrews, R.K.; Mason, K.D.; Salem, H.H.; Huang, D.C.S.; Kile, B.T.; Roberts, A.W.; Jackson, S.P. Bcl-xL–inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood, 2011, 118(6), 1663-1674. doi: 10.1182/blood-2011-04-347849 PMID: 21673344
- Kile, B.T. The role of apoptosis in megakaryocytes and platelets. Br. J. Haematol., 2014, 165(2), 217-226. doi: 10.1111/bjh.12757 PMID: 24467740
- Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.S.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C.M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208. doi: 10.1038/nm.3048 PMID: 23291630
- Yang, S.; Mao, Y.; Zhang, H.; Xu, Y.; An, J.; Huang, Z. The chemical biology of apoptosis: Revisited after 17 years. Eur. J. Med. Chem., 2019, 177, 63-75. doi: 10.1016/j.ejmech.2019.05.019 PMID: 31129454
- Pan, R.; Hogdal, L.J.; Benito, J.M.; Bucci, D.; Han, L.; Borthakur, G.; Cortes, J.; DeAngelo, D.J.; Debose, L.; Mu, H.; Döhner, H.; Gaidzik, V.I.; Galinsky, I.; Golfman, L.S.; Haferlach, T.; Harutyunyan, K.G.; Hu, J.; Leverson, J.D.; Marcucci, G.; Müschen, M.; Newman, R.; Park, E.; Ruvolo, P.P.; Ruvolo, V.; Ryan, J.; Schindela, S.; Zweidler-McKay, P.; Stone, R.M.; Kantarjian, H.; Andreeff, M.; Konopleva, M.; Letai, A.G. Selective Bcl-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov., 2014, 4(3), 362-375. doi: 10.1158/2159-8290.CD-13-0609 PMID: 24346116
- Touzeau, C.; Dousset, C.; Le Gouill, S.; Sampath, D.; Leverson, J.D.; Souers, A.J.; Maïga, S.; Béné, M.C.; Moreau, P.; Pellat-Deceunynck, C.; Amiot, M. The Bcl-2 specific BH3 mimetic ABT-199: A promising targeted therapy for t(11;14) multiple myeloma. Leukemia, 2014, 28(1), 210-212. doi: 10.1038/leu.2013.216 PMID: 23860449
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; Wong, S.; Dunbar, M.; Zhu, M.; Desai, M.B.; Cerri, E.; Heitner Enschede, S.; Humerickhouse, R.A.; Wierda, W.G.; Seymour, J.F. Targeting Bcl-2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med., 2016, 374(4), 311-322. doi: 10.1056/NEJMoa1513257 PMID: 26639348
- Stilgenbauer, S.; Eichhorst, B.; Schetelig, J.; Coutre, S.; Seymour, J.F.; Munir, T.; Puvvada, S.D.; Wendtner, C.M.; Roberts, A.W.; Jurczak, W.; Mulligan, S.P.; Böttcher, S.; Mobasher, M.; Zhu, M.; Desai, M.; Chyla, B.; Verdugo, M.; Enschede, S.H.; Cerri, E.; Humerickhouse, R.; Gordon, G.; Hallek, M.; Wierda, W.G. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: A multicentre, open-label, phase 2 study. Lancet Oncol., 2016, 17(6), 768-778. doi: 10.1016/S1470-2045(16)30019-5 PMID: 27178240
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; De la Serna, J.; Jaeger, U.; Cartron, G.; Montillo, M.; Humerickhouse, R.; Punnoose, E.A.; Li, Y.; Boyer, M.; Humphrey, K.; Mobasher, M.; Kater, A.P. Venetoclax–rituximab in relapsed or refractory chronic lymphocytic leukemia. N. Engl. J. Med., 2018, 378(12), 1107-1120. doi: 10.1056/NEJMoa1713976 PMID: 29562156
- Lok, S.W.; Whittle, J.R.; Vaillant, F.; Teh, C.E.; Lo, L.L.; Policheni, A.N.; Bergin, A.R.T.; Desai, J.; Ftouni, S.; Gandolfo, L.C.; Liew, D.; Liu, H.K.; Mann, G.B.; Moodie, K.; Murugasu, A.; Pal, B.; Roberts, A.W.; Rosenthal, M.A.; Shackleton, K.; Silva, M.J.; Siow, Z.R.; Smyth, G.K.; Taylor, L.; Travers, A.; Yeo, B.; Yeung, M.M.; Bujak, A.Z.; Dawson, S.J.; Gray, D.H.D.; Visvader, J.E.; Lindeman, G.J. A phase Ib dose-escalation and expansion study of the Bcl-2 inhibitor venetoclax combined with tamoxifen in er and BCL2–positive metastatic breast cancer. Cancer Discov., 2019, 9(3), 354-369. doi: 10.1158/2159-8290.CD-18-1151 PMID: 30518523
- Vogler, M. Targeting Bcl-2-proteins for the treatment of solid tumours. Adv. Med., 2014, 2014, 1-14. doi: 10.1155/2014/943648 PMID: 26556430
- Levesley, J.; Steele, L.; Brüning-Richardson, A.; Davison, A.; Zhou, J.; Ding, C.; Lawler, S.; Short, S.C. Selective BCL-XL inhibition promotes apoptosis in combination with MLN8237 in medulloblastoma and pediatric glioblastoma cells. Neuro-oncol., 2018, 20(2), 203-214. doi: 10.1093/neuonc/nox134 PMID: 29016820
- Lessene, G.; Czabotar, P.E.; Sleebs, B.E.; Zobel, K.; Lowes, K.N.; Adams, J.M.; Baell, J.B.; Colman, P.M.; Deshayes, K.; Fairbrother, W.J.; Flygare, J.A.; Gibbons, P.; Kersten, W.J.A.; Kulasegaram, S.; Moss, R.M.; Parisot, J.P.; Smith, B.J.; Street, I.P.; Yang, H.; Huang, D.C.S.; Watson, K.G. Structure-guided design of a selective BCL-XL inhibitor. Nat. Chem. Biol., 2013, 9(6), 390-397. doi: 10.1038/nchembio.1246 PMID: 23603658
- Abed, M.N.; Abdullah, M.I.; Richardson, A. Antagonism of Bcl-XL is necessary for synergy between carboplatin and BH3 mimetics in ovarian cancer cells. J. Ovarian Res., 2016, 9(1), 25. doi: 10.1186/s13048-016-0234-y PMID: 27080533
- Lucantoni, F.; Lindner, A.U.; O’Donovan, N.; Düssmann, H.; Prehn, J.H.M. Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis., 2018, 9(2), 42. doi: 10.1038/s41419-017-0039-y PMID: 29352235
- Tao, Z.F.; Hasvold, L.; Wang, L.; Wang, X.; Petros, A.M.; Park, C.H.; Boghaert, E.R.; Catron, N.D.; Chen, J.; Colman, P.M. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med. Chem. Lett., 2014, 5(10), 1088-1093. doi: 10.1021/ml5001867
- Wang, L.; Doherty, G.A.; Judd, A.S.; Tao, Z.F.; Hansen, T.M.; Frey, R.R.; Song, X.; Bruncko, M.; Kunzer, A.R.; Wang, X.; Wendt, M.D.; Flygare, J.A.; Catron, N.D.; Judge, R.A.; Park, C.H.; Shekhar, S.; Phillips, D.C.; Nimmer, P.; Smith, M.L.; Tahir, S.K.; Xiao, Y.; Xue, J.; Zhang, H.; Le, P.N.; Mitten, M.J.; Boghaert, E.R.; Gao, W.; Kovar, P.; Choo, E.F.; Diaz, D.; Fairbrother, W.J.; Elmore, S.W.; Sampath, D.; Leverson, J.D.; Souers, A.J. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-X L Inhibitor. ACS Med. Chem. Lett., 2020, 11(10), 1829-1836. doi: 10.1021/acsmedchemlett.9b00568 PMID: 33062160
- Leverson, J.D.; Phillips, D.C.; Mitten, M.J.; Boghaert, E.R.; Diaz, D.; Tahir, S.K.; Belmont, L.D.; Nimmer, P.; Xiao, Y.; Ma, X.M.; Lowes, K.N.; Kovar, P.; Chen, J.; Jin, S.; Smith, M.; Xue, J.; Zhang, H.; Oleksijew, A.; Magoc, T.J.; Vaidya, K.S.; Albert, D.H.; Tarrant, J.M.; La, N.; Wang, L.; Tao, Z.F.; Wendt, M.D.; Sampath, D.; Rosenberg, S.H.; Tse, C.; Huang, D.C.; Fairbrother, W.J.; Elmore, S.W.; Souers, A.J. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl. Med., 2015, 7(279), 279ra40. doi: 10.1126/scitranslmed.aaa4642 PMID: 25787766
- FDA authorisation of first-in-human clinical trial with AstraZeneca’s DEP® product AZD0466. 2024. Available from: https://starpharma.com/news/view/view/436/fda-authorisation-of-first-in-human-clinical-trial-with-astrazenecaas-dep-product-azd0466
- Ploumaki, I.; Triantafyllou, E.; Koumprentziotis, I.A.; Karampinos, K.; Drougkas, K.; Karavolias, I.; Trontzas, I.; Kotteas, E.A. Bcl-2 pathway inhibition in solid tumors: A review of clinical trials. Clin. Transl. Oncol., 2023, 25(6), 1554-1578. doi: 10.1007/s12094-022-03070-9 PMID: 36639602
- Kehr, S.; Vogler, M. It’s time to die: BH3 mimetics in solid tumors. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(5), 118987. doi: 10.1016/j.bbamcr.2021.118987 PMID: 33600840
- Kotschy, A.; Szlavik, Z.; Murray, J.; Davidson, J.; Maragno, A.L.; Le Toumelin-Braizat, G.; Chanrion, M.; Kelly, G.L.; Gong, J.N.; Moujalled, D.M.; Bruno, A.; Csekei, M.; Paczal, A.; Szabo, Z.B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Ondi, L.; Blasko, G.; Robertson, A.; Surgenor, A.; Dokurno, P.; Chen, I.; Matassova, N.; Smith, J.; Pedder, C.; Graham, C.; Studeny, A.; Lysiak-Auvity, G.; Girard, A.M.; Gravé, F.; Segal, D.; Riffkin, C.D.; Pomilio, G.; Galbraith, L.C.A.; Aubrey, B.J.; Brennan, M.S.; Herold, M.J.; Chang, C.; Guasconi, G.; Cauquil, N.; Melchiore, F.; Guigal-Stephan, N.; Lockhart, B.; Colland, F.; Hickman, J.A.; Roberts, A.W.; Huang, D.C.S.; Wei, A.H.; Strasser, A.; Lessene, G.; Geneste, O. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature, 2016, 538(7626), 477-482. doi: 10.1038/nature19830 PMID: 27760111
- Leverson, J.D.; Zhang, H.; Chen, J.; Tahir, S.K.; Phillips, D.C.; Xue, J.; Nimmer, P.; Jin, S.; Smith, M.; Xiao, Y.; Kovar, P.; Tanaka, A.; Bruncko, M.; Sheppard, G.S.; Wang, L.; Gierke, S.; Kategaya, L.; Anderson, D.J.; Wong, C.; Eastham-Anderson, J.; Ludlam, M.J.C.; Sampath, D.; Fairbrother, W.J.; Wertz, I.; Rosenberg, S.H.; Tse, C.; Elmore, S.W.; Souers, A.J. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis., 2015, 6(1), e1590-e1590. doi: 10.1038/cddis.2014.561 PMID: 25590800
- Merino, D.; Whittle, J.R.; Vaillant, F.; Serrano, A.; Gong, J.N.; Giner, G.; Maragno, A.L.; Chanrion, M.; Schneider, E.; Pal, B.; Li, X.; Dewson, G.; Gräsel, J.; Liu, K.; Lalaoui, N.; Segal, D.; Herold, M.J.; Huang, D.C.S.; Smyth, G.K.; Geneste, O.; Lessene, G.; Visvader, J.E.; Lindeman, G.J. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci. Transl. Med., 2017, 9(401), eaam7049. doi: 10.1126/scitranslmed.aam7049 PMID: 28768804
- Szlávik, Z.; Ondi, L.; Csékei, M.; Paczal, A.; Szabó, Z.B.; Radics, G.; Murray, J.; Davidson, J.; Chen, I.; Davis, B.; Hubbard, R.E.; Pedder, C.; Dokurno, P.; Surgenor, A.; Smith, J.; Robertson, A.; LeToumelin-Braizat, G.; Cauquil, N.; Zarka, M.; Demarles, D.; Perron-Sierra, F.; Claperon, A.; Colland, F.; Geneste, O.; Kotschy, A. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity. J. Med. Chem., 2019, 62(15), 6913-6924. doi: 10.1021/acs.jmedchem.9b00134 PMID: 31339316
- Fletcher, S. MCL-1 inhibitors - Where are we now (2019)? Expert Opin. Ther. Pat., 2019, 29(11), 909-919. doi: 10.1080/13543776.2019.1672661
- Szlavik, Z.; Csekei, M.; Paczal, A.; Szabo, Z.B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Murray, J.; Davidson, J.; Chen, I.; Dokurno, P.; Surgenor, A.E.; Daniels, Z.M.; Hubbard, R.E.; Le Toumelin-Braizat, G.; Claperon, A.; Lysiak-Auvity, G.; Girard, A.M.; Bruno, A.; Chanrion, M.; Colland, F.; Maragno, A.L.; Demarles, D.; Geneste, O.; Kotschy, A. Discovery of S64315, a potent and selective Mcl-1 inhibitor. J. Med. Chem., 2020, 63(22), 13762-13795. doi: 10.1021/acs.jmedchem.0c01234 PMID: 33146521
- Tron, A.E.; Belmonte, M.A.; Adam, A.; Aquila, B.M.; Boise, L.H.; Chiarparin, E.; Cidado, J.; Embrey, K.J.; Gangl, E.; Gibbons, F.D.; Gregory, G.P.; Hargreaves, D.; Hendricks, J.A.; Johannes, J.W.; Johnstone, R.W.; Kazmirski, S.L.; Kettle, J.G.; Lamb, M.L.; Matulis, S.M.; Nooka, A.K.; Packer, M.J.; Peng, B.; Rawlins, P.B.; Robbins, D.W.; Schuller, A.G.; Su, N.; Yang, W.; Ye, Q.; Zheng, X.; Secrist, J.P.; Clark, E.A.; Wilson, D.M.; Fawell, S.E.; Hird, A.W. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun., 2018, 9(1), 5341. doi: 10.1038/s41467-018-07551-w PMID: 30559424
- Caenepeel, S.; Brown, S.P.; Belmontes, B.; Moody, G.; Keegan, K.S.; Chui, D.; Whittington, D.A.; Huang, X.; Poppe, L.; Cheng, A.C.; Cardozo, M.; Houze, J.; Li, Y.; Lucas, B.; Paras, N.A.; Wang, X.; Taygerly, J.P.; Vimolratana, M.; Zancanella, M.; Zhu, L.; Cajulis, E.; Osgood, T.; Sun, J.; Damon, L.; Egan, R.K.; Greninger, P.; McClanaghan, J.D.; Gong, J.; Moujalled, D.; Pomilio, G.; Beltran, P.; Benes, C.H.; Roberts, A.W.; Huang, D.C.; Wei, A.; Canon, J.; Coxon, A.; Hughes, P.E. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov., 2018, 8(12), 1582-1597. doi: 10.1158/2159-8290.CD-18-0387 PMID: 30254093
- Soderquist, R.S.; Crawford, L.; Liu, E.; Lu, M.; Agarwal, A.; Anderson, G.R.; Lin, K.H.; Winter, P.S.; Cakir, M.; Wood, K.C. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat. Commun., 2018, 9(1), 3513. doi: 10.1038/s41467-018-05815-z PMID: 30158527
- Seiller, C.; Maiga, S.; Touzeau, C.; Bellanger, C.; Kervoëlen, C.; Descamps, G.; Maillet, L.; Moreau, P.; Pellat-Deceunynck, C.; Gomez-Bougie, P.; Amiot, M. Dual targeting of BCL2 and MCL1 rescues myeloma cells resistant to BCL2 and MCL1 inhibitors associated with the formation of BAX/BAK hetero-complexes. Cell Death Dis., 2020, 11(5), 316. doi: 10.1038/s41419-020-2505-1 PMID: 32371863
- Phillips, D.C.; Xiao, Y.; Lam, L.T.; Litvinovich, E.; Roberts-Rapp, L.; Souers, A.J.; Leverson, J.D. Loss in MCL-1 function sensitizes non-Hodgkin’s lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J., 2015, 5(11), e368-e368. doi: 10.1038/bcj.2015.88 PMID: 26565405
- Algarín, E.M.; Díaz-Tejedor, A.; Mogollón, P.; Hernández-García, S.; Corchete, L.A.; San-Segundo, L.; Martín-Sánchez, M.; González-Méndez, L.; Schoumacher, M.; Banquet, S.; Kraus-Berthier, L.; Kloos, I.; Derreal, A.; Halilovic, E.; Maacke, H.; Gutiérrez, N.C.; Mateos, M.V.; Paíno, T.; Garayoa, M.; Ocio, E.M. Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma. Haematologica, 2020, 105(3), e116-e120. doi: 10.3324/haematol.2018.212308 PMID: 31320555
- Zheng, C.H.; Zhou, Y.J.; Zhu, J.; Chen, J.; Li, Y.W.; Sheng, C.Q.; Song, Y.L.; Lu, J.G.; Jiang, J.H.; Liu, N. Property analysis of inhibitors-binding site of Bcl-2 protein. Chem. J. Chinese U., 2008, 29(3), 591-595.
- Zheng, C.H.; Zhou, Y.J.; Zhu, J.; Ji, H.T.; Chen, J.; Li, Y.W.; Sheng, C.Q.; Lu, J.G.; Jiang, J.H.; Tang, H.; Song, Y.L. Construction of a three-dimensional pharmacophore for Bcl-2 inhibitors by flexible docking and the multiple copy simultaneous search method. Bioorg. Med. Chem., 2007, 15(19), 6407-6417. doi: 10.1016/j.bmc.2007.06.052 PMID: 17629704
- Hamdy, R.; Ziedan, N.I.; Ali, S.; Bordoni, C.; El-Sadek, M.; Lashin, E.; Brancale, A.; Jones, A.T.; Westwell, A.D. Synthesis and evaluation of 5-(1 H -indol-3-yl)- N -aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 1037-1040. doi: 10.1016/j.bmcl.2016.12.061 PMID: 28087272
- Kamath, P.R.; Sunil, D.; Das, S.; Abdul Salam, A.A.; Rao, B.S.S. Efficient T3P® mediated synthesis, differential cytotoxicity and apoptosis induction by indolo-triazolo-thiadiazoles in human breast adenocarcinoma cells. Chem. Biol. Interact., 2017, 268, 53-67. doi: 10.1016/j.cbi.2017.02.011 PMID: 28235427
- Kamath, P.R.; Sunil, D.; Ajees, A.A.; Pai, K.S.R.; Biswas, S.N. ′-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur. J. Med. Chem., 2016, 120, 134-147. doi: 10.1016/j.ejmech.2016.05.010 PMID: 27187865
- Zhang, Z.; Wu, G.; Xie, F.; Song, T.; Chang, X. 3-Thiomorpholin-8-oxo-8H-acenaphtho1,2-bpyrrole-9-carbonitrile (S1) based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure-activity relationship studies. J. Med. Chem., 2011, 54(4), 1101-1105. doi: 10.1021/jm101181u PMID: 21235240
- Wang, M.; Tian, W.; Wang, C.; Lu, S.; Yang, C.; Wang, J.; Song, Y.; Zhou, Y.; Zhu, J.; Li, Z.; Zheng, C. Design, synthesis, and activity evaluation of selective inhibitors of anti-apoptotic Bcl-2 proteins: The effects on the selectivity of the P1 pockets in the active sites. Bioorg. Med. Chem. Lett., 2016, 26(21), 5207-5211. doi: 10.1016/j.bmcl.2016.09.061 PMID: 27712939
- Fu, H.; Hou, X.; Wang, L.; Dun, Y.; Yang, X.; Fang, H. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(22), 5265-5269. doi: 10.1016/j.bmcl.2015.09.051 PMID: 26421995
- Wang, G.; Wang, Y.; Wang, L.; Han, L.; Hou, X.; Fu, H.; Fang, H. Design, synthesis and preliminary bioactivity studies of imidazolidine-2,4-dione derivatives as Bcl-2 inhibitors. Bioorg. Med. Chem., 2015, 23(23), 7359-7365. doi: 10.1016/j.bmc.2015.10.023 PMID: 26558516
- Aboalhaija, N.H.; Zihlif, M.A.; Taha, M.O. Discovery of new selective cytotoxic agents against Bcl-2 expressing cancer cells using ligand-based modeling. Chem. Biol. Interact., 2016, 250, 12-26. doi: 10.1016/j.cbi.2016.03.006 PMID: 26954606
- Hamdy, R.; Elseginy, S.A.; Ziedan, N.I.; El-Sadek, M.; Lashin, E.; Jones, A.T.; Westwell, A.D. Design, synthesis and evaluation of new bioactive oxadiazole derivatives as anticancer agents targeting Bcl-2. Int. J. Mol. Sci., 2020, 21(23), 8980. doi: 10.3390/ijms21238980 PMID: 33256166
- Nagy, M.I.; Darwish, K.M.; Kishk, S.M.; Tantawy, M.A.; Nasr, A.M.; Qushawy, M.; Swidan, S.A.; Mostafa, S.M.; Salama, I. Design, synthesis, anticancer activity, and solid lipid nanoparticle formulation of indole- and benzimidazole-based compounds as pro-apoptotic agents targeting Bcl-2 protein. Pharmaceuticals (Basel), 2021, 14(2), 113. doi: 10.3390/ph14020113 PMID: 33535550
- Lamie, P.F.; Philoppes, J.N. Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors. Bioorg. Chem., 2021, 116, 105335. doi: 10.1016/j.bioorg.2021.105335 PMID: 34509795
- Deng, H.; Huang, M.; Liu, H.; Zhang, H.; Liu, L.; Gao, B.; Li, X.; Li, J.; Niu, Q.; Zhang, Z.; Luan, S.; Zhang, J.; Jing, Y.; Liu, D.; Zhao, L. Development of a series of novel Mcl-1 inhibitors bearing an indole carboxylic acid moiety. Bioorg. Chem., 2022, 127, 106018. doi: 10.1016/j.bioorg.2022.106018 PMID: 35901526
Arquivos suplementares
